pytorch/test/distributed/fsdp/test_utils.py
lzhang2 84b58bd63e Enable FSDP tests on XPU device (#147518)
**Motivation:**

Enable FSDP tests on XPU device

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147518
Approved by: https://github.com/weifengpy
2025-03-04 23:49:37 +00:00

142 lines
4.1 KiB
Python

# Owner(s): ["oncall: distributed"]
import random
import sys
from collections import OrderedDict
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.utils import _apply_to_tensors, _replace_by_prefix
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
parametrize,
run_tests,
subtest,
TEST_HPU,
TEST_WITH_DEV_DBG_ASAN,
TEST_XPU,
TestCase,
)
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
if TEST_HPU:
list_device = "hpu"
elif TEST_XPU:
list_device = "xpu"
else:
list_device = "cuda"
class TestUtils(TestCase):
@parametrize(
"device_list",
[
["cpu"],
[list_device],
subtest(["cpu", list_device], name=f"cpu_{list_device}"),
],
)
@skip_if_lt_x_gpu(1)
def test_apply_to_tensors(self, device_list):
expected = 0
def get_a_tensor():
"""Return a random tensor on random device."""
dev = random.choice(device_list)
shape = random.choice(((1), (2, 3), (4, 5, 6), (7, 8, 9, 10)))
t = torch.rand(shape).to(dev)
nonlocal expected
expected += t.numel()
return t
@dataclass
class NonFrozenDataClass:
some_key: str
some_float: float
some_tensor: list[torch.Tensor]
@dataclass(frozen=True)
class FrozenDataClass:
some_key: str
some_float: float
some_tensor: list[torch.Tensor]
# create a mixed bag of data.
data = [1, "str"]
data.append({"key1": get_a_tensor(), "key2": {1: get_a_tensor()}, "key3": 3})
data.insert(0, {"x", get_a_tensor(), get_a_tensor()})
data.append(([1], get_a_tensor(), (1), [get_a_tensor()], {1, 2}))
data.append(
{"non_frozen_ds": NonFrozenDataClass("some_key", 1.0, [get_a_tensor()])}
)
data.append({"frozen_ds": FrozenDataClass("some_key", 1.0, [get_a_tensor()])})
od = OrderedDict()
od["k"] = "value"
data.append(od)
total = 0
def fn(t):
nonlocal total
total += t.numel()
return t
new_data = _apply_to_tensors(fn, data)
self.assertEqual(total, expected)
for i, v in enumerate(data):
self.assertEqual(type(new_data[i]), type(v))
@skip_if_lt_x_gpu(1)
def test_replace_by_prefix(self):
state_dict = {
"layer.a": torch.tensor(1),
"abc.layer.def": torch.tensor(2),
"layer.b": torch.tensor(3),
}
original_state_dict = state_dict.copy()
_replace_by_prefix(state_dict, "layer.", "module.layer.")
assert state_dict == {
"module.layer.a": torch.tensor(1),
"abc.layer.def": torch.tensor(2),
"module.layer.b": torch.tensor(3),
}
_replace_by_prefix(state_dict, "module.layer.", "layer.")
assert state_dict == original_state_dict
@skip_if_lt_x_gpu(1)
def test_packed_sequence(self):
"""Test to ensure RNN packed sequences are modified correctly."""
rnn = nn.RNN(5, 5)
x = torch.rand((5, 1, 5), dtype=torch.float)
seq_length = torch.tensor([4], dtype=torch.int)
def fill_fn(x):
x.fill_(0)
x = nn.utils.rnn.pack_padded_sequence(x, seq_length)
x, _ = rnn(x)
x = _apply_to_tensors(fill_fn, x)
x, _ = nn.utils.rnn.pad_packed_sequence(x)
self.assertEqual(torch.sum(x), 0)
devices = ("cuda", "hpu", "xpu")
instantiate_device_type_tests(TestUtils, globals(), only_for=devices, allow_xpu=True)
if __name__ == "__main__":
run_tests()