mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
**Motivation:** Enable FSDP tests on XPU device Pull Request resolved: https://github.com/pytorch/pytorch/pull/147518 Approved by: https://github.com/weifengpy
77 lines
2.3 KiB
Python
77 lines
2.3 KiB
Python
# Owner(s): ["oncall: distributed"]
|
|
import sys
|
|
|
|
import torch
|
|
from torch import distributed as dist
|
|
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
|
from torch.nn import Linear, Module
|
|
from torch.optim import SGD
|
|
from torch.testing._internal.common_device_type import instantiate_device_type_tests
|
|
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
|
|
from torch.testing._internal.common_fsdp import FSDPTest
|
|
from torch.testing._internal.common_utils import (
|
|
parametrize,
|
|
run_tests,
|
|
subtest,
|
|
TEST_WITH_DEV_DBG_ASAN,
|
|
)
|
|
|
|
|
|
if not dist.is_available():
|
|
print("Distributed not available, skipping tests", file=sys.stderr)
|
|
sys.exit(0)
|
|
if TEST_WITH_DEV_DBG_ASAN:
|
|
print(
|
|
"Skip dev-asan as torch + multiprocessing spawn have known issues",
|
|
file=sys.stderr,
|
|
)
|
|
sys.exit(0)
|
|
|
|
|
|
class TestInput(FSDPTest):
|
|
@property
|
|
def world_size(self):
|
|
return 1
|
|
|
|
@skip_if_lt_x_gpu(1)
|
|
@parametrize("input_cls", [subtest(dict, name="dict"), subtest(list, name="list")])
|
|
def test_input_type(self, device, input_cls):
|
|
"""Test FSDP with input being a list or a dict, only single GPU."""
|
|
|
|
class Model(Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layer = Linear(4, 4)
|
|
|
|
def forward(self, input):
|
|
if isinstance(input, list):
|
|
input = input[0]
|
|
else:
|
|
assert isinstance(input, dict), input
|
|
input = input["in"]
|
|
return self.layer(input)
|
|
|
|
fsdp_kwargs = {
|
|
"device_id": device,
|
|
}
|
|
model = FSDP(Model().to(device), **fsdp_kwargs)
|
|
optim = SGD(model.parameters(), lr=0.1)
|
|
for _ in range(5):
|
|
in_data = torch.rand(64, 4).to(device)
|
|
in_data.requires_grad = True
|
|
if input_cls is list:
|
|
in_data = [in_data]
|
|
else:
|
|
self.assertTrue(input_cls is dict)
|
|
in_data = {"in": in_data}
|
|
out = model(in_data)
|
|
out.sum().backward()
|
|
optim.step()
|
|
optim.zero_grad()
|
|
|
|
|
|
devices = ("cuda", "hpu", "xpu")
|
|
instantiate_device_type_tests(TestInput, globals(), only_for=devices, allow_xpu=True)
|
|
if __name__ == "__main__":
|
|
run_tests()
|