mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Apply parts of pyupgrade to torch (starting with the safest changes). This PR only does two things: removes the need to inherit from object and removes unused future imports. Pull Request resolved: https://github.com/pytorch/pytorch/pull/94308 Approved by: https://github.com/ezyang, https://github.com/albanD
62 lines
2.1 KiB
Python
62 lines
2.1 KiB
Python
r""""Contains definitions of the methods used by the _BaseDataLoaderIter to fetch
|
|
data from an iterable-style or map-style dataset. This logic is shared in both
|
|
single- and multi-processing data loading.
|
|
"""
|
|
|
|
|
|
class _BaseDatasetFetcher:
|
|
def __init__(self, dataset, auto_collation, collate_fn, drop_last):
|
|
self.dataset = dataset
|
|
self.auto_collation = auto_collation
|
|
self.collate_fn = collate_fn
|
|
self.drop_last = drop_last
|
|
|
|
def fetch(self, possibly_batched_index):
|
|
raise NotImplementedError()
|
|
|
|
|
|
class _IterableDatasetFetcher(_BaseDatasetFetcher):
|
|
def __init__(self, dataset, auto_collation, collate_fn, drop_last):
|
|
super(_IterableDatasetFetcher, self).__init__(
|
|
dataset, auto_collation, collate_fn, drop_last
|
|
)
|
|
self.dataset_iter = iter(dataset)
|
|
self.ended = False
|
|
|
|
def fetch(self, possibly_batched_index):
|
|
if self.ended:
|
|
raise StopIteration
|
|
|
|
if self.auto_collation:
|
|
data = []
|
|
for _ in possibly_batched_index:
|
|
try:
|
|
data.append(next(self.dataset_iter))
|
|
except StopIteration:
|
|
self.ended = True
|
|
break
|
|
if len(data) == 0 or (
|
|
self.drop_last and len(data) < len(possibly_batched_index)
|
|
):
|
|
raise StopIteration
|
|
else:
|
|
data = next(self.dataset_iter)
|
|
return self.collate_fn(data)
|
|
|
|
|
|
class _MapDatasetFetcher(_BaseDatasetFetcher):
|
|
def __init__(self, dataset, auto_collation, collate_fn, drop_last):
|
|
super(_MapDatasetFetcher, self).__init__(
|
|
dataset, auto_collation, collate_fn, drop_last
|
|
)
|
|
|
|
def fetch(self, possibly_batched_index):
|
|
if self.auto_collation:
|
|
if hasattr(self.dataset, "__getitems__") and self.dataset.__getitems__:
|
|
data = self.dataset.__getitems__(possibly_batched_index)
|
|
else:
|
|
data = [self.dataset[idx] for idx in possibly_batched_index]
|
|
else:
|
|
data = self.dataset[possibly_batched_index]
|
|
return self.collate_fn(data)
|