pytorch/caffe2/python/operator_test/wngrad_test.py
Natalia Gimelshein db5e5781ad replace all remaining occurrences of deadline=1000, to prevent test flakiness
Summary: Per title

Test Plan: Fixes existing tests

Reviewed By: robieta

Differential Revision: D28690296

fbshipit-source-id: d7b5b5065517373b75d501872814c89b24ec8cfc
2021-05-25 15:55:30 -07:00

219 lines
8.1 KiB
Python

import functools
import logging
import hypothesis
from hypothesis import given, settings, HealthCheck
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
logger = logging.getLogger(__name__)
def ref_wngrad(param_in, seq_b_in, grad, lr, epsilon,
output_effective_lr=False,
output_effective_lr_and_update=False):
# helper functions for wngrad operator test
seq_b_out = seq_b_in + 1.0 / (seq_b_in + epsilon) * np.sum(grad * grad)
effective_lr = lr / (seq_b_in + epsilon)
grad_adj = effective_lr * grad
param_out = param_in + grad_adj
if output_effective_lr_and_update:
return (param_out.astype(np.float32), seq_b_out.astype(np.float32),
effective_lr.astype(np.float32),
grad_adj.astype(np.float32))
elif output_effective_lr:
return (param_out.astype(np.float32), seq_b_out.astype(np.float32),
effective_lr.astype(np.float32))
return (param_out.astype(np.float32), seq_b_out.astype(np.float32))
def wngrad_sparse_test_helper(parent_test, inputs, seq_b, lr, epsilon,
engine, gc, dc):
# helper functions for wngrad operator test
param, grad = inputs
seq_b = np.array([seq_b, ], dtype=np.float32)
lr = np.array([lr], dtype=np.float32)
# Create an indexing array containing values that are lists of indices,
# which index into grad
indices = np.random.choice(np.arange(grad.shape[0]),
size=np.random.randint(grad.shape[0]), replace=False)
# Sparsify grad
grad = grad[indices]
op = core.CreateOperator(
"SparseWngrad",
["param", "seq_b", "indices", "grad", "lr"],
["param", "seq_b"],
epsilon=epsilon,
engine=engine,
device_option=gc)
def ref_sparse(param, seq_b, indices, grad, lr):
param_out = np.copy(param)
seq_b_out = np.copy(seq_b)
seq_b_out = seq_b + 1.0 / seq_b * np.sum(grad * grad)
for i, index in enumerate(indices):
param_out[index] = param[index] + lr / (seq_b + epsilon) * grad[i]
return (param_out, seq_b_out)
logger.info('test_sparse_adagrad with full precision embedding')
seq_b_i = seq_b.astype(np.float32)
param_i = param.astype(np.float32)
parent_test.assertReferenceChecks(
gc, op, [param_i, seq_b_i, indices, grad, lr],
ref_sparse
)
class TestWngrad(serial.SerializedTestCase):
@given(inputs=hu.tensors(n=2),
seq_b=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
lr=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
**hu.gcs_cpu_only)
@settings(deadline=10000)
def test_wngrad_dense_base(self, inputs, seq_b, lr, epsilon, gc, dc):
param, grad = inputs
seq_b = np.array([seq_b, ], dtype=np.float32)
lr = np.array([lr], dtype=np.float32)
op = core.CreateOperator(
"Wngrad",
["param", "seq_b", "grad", "lr"],
["param", "seq_b"],
epsilon=epsilon,
device_option=gc,
)
self.assertReferenceChecks(
gc, op,
[param, seq_b, grad, lr],
functools.partial(ref_wngrad, epsilon=epsilon))
@given(inputs=hu.tensors(n=2),
seq_b=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
lr=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
**hu.gcs_cpu_only)
@settings(deadline=10000)
def test_wngrad_dense_output_effective_lr(self, inputs, seq_b,
lr, epsilon, gc, dc):
param, grad = inputs
seq_b = np.array([seq_b, ], dtype=np.float32)
lr = np.array([lr], dtype=np.float32)
op = core.CreateOperator(
"Wngrad",
["param", "seq_b", "grad", "lr"],
["param", "seq_b", "effective_lr"],
epsilon=epsilon,
device_option=gc,
)
self.assertReferenceChecks(
gc, op,
[param, seq_b, grad, lr],
functools.partial(ref_wngrad, epsilon=epsilon,
output_effective_lr=True))
@given(inputs=hu.tensors(n=2),
seq_b=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
lr=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
**hu.gcs_cpu_only)
@settings(deadline=10000)
def test_wngrad_dense_output_effective_lr_and_update(
self, inputs, seq_b, lr, epsilon, gc, dc):
param, grad = inputs
seq_b = np.abs(np.array([seq_b, ], dtype=np.float32))
lr = np.array([lr], dtype=np.float32)
op = core.CreateOperator(
"Wngrad",
["param", "seq_b", "grad", "lr"],
["param", "seq_b", "effective_lr", "update"],
epsilon=epsilon,
device_option=gc,
)
self.assertReferenceChecks(
gc, op,
[param, seq_b, grad, lr],
functools.partial(ref_wngrad, epsilon=epsilon,
output_effective_lr_and_update=True))
# Suppress filter_too_much health check.
# Likely caused by `assume` call falling through too often.
@settings(suppress_health_check=[HealthCheck.filter_too_much], deadline=10000)
@given(inputs=hu.tensors(n=2),
seq_b=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
lr=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
**hu.gcs_cpu_only)
def test_sparse_wngrad(self, inputs, seq_b, lr, epsilon, gc, dc):
return wngrad_sparse_test_helper(self, inputs, seq_b, lr, epsilon,
None, gc, dc)
@given(inputs=hu.tensors(n=1),
lr=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
seq_b=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
**hu.gcs_cpu_only)
@settings(deadline=10000)
def test_sparse_wngrad_empty(self, inputs, seq_b, lr, epsilon, gc, dc):
param = inputs[0]
seq_b = np.array([seq_b, ], dtype=np.float32)
lr = np.array([lr], dtype=np.float32)
grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32)
indices = np.empty(shape=(0,), dtype=np.int64)
hypothesis.note('indices.shape: %s' % str(indices.shape))
op = core.CreateOperator(
"SparseWngrad",
["param", "seq_b", "indices", "grad", "lr"],
["param", "seq_b"],
epsilon=epsilon,
device_option=gc)
def ref_sparse(param, seq_b, indices, grad, lr):
param_out = np.copy(param)
seq_b_out = np.copy(seq_b)
return (param_out, seq_b_out)
print('test_sparse_adagrad_empty with full precision embedding')
seq_b_i = seq_b.astype(np.float32)
param_i = param.astype(np.float32)
self.assertReferenceChecks(
gc, op, [param_i, seq_b_i, indices, grad, lr], ref_sparse
)