mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/60382 Instead of setting weight_decay w uniformly for all ids, for each row i in the sparse embedding table, the actual weight_decay `w_i` becomes `w*freq_i` where `freq_i = halflife/counter_i \in [\log(2), halflife]`. Counter is from `rowwise_counter` with definition `counter_i = 1 + \exp(-iter_{\delta}*\rho)*counter_i`. Test Plan: buck test //caffe2/caffe2/python/operator_test:adagrad_test -- test_row_wise_sparse_adagrad buck test caffe2/caffe2/fb/dper/layer_models/tests/split_1:sparse_nn_test_weight_decay Reviewed By: 0x10cxR1 Differential Revision: D25581030 fbshipit-source-id: 54b3831b20516c76c559b13d8deb809e2ee3b446
242 lines
7.4 KiB
Python
242 lines
7.4 KiB
Python
import functools
|
|
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import caffe2.python.serialized_test.serialized_test_util as serial
|
|
import hypothesis.strategies as st
|
|
import numpy as np
|
|
from caffe2.python import core
|
|
from caffe2.python.operator_test.adagrad_test_helper import (
|
|
adagrad_sparse_test_helper,
|
|
ref_adagrad,
|
|
)
|
|
from hypothesis import HealthCheck, given, settings
|
|
|
|
|
|
class TestAdagrad(serial.SerializedTestCase):
|
|
@given(
|
|
inputs=hu.tensors(n=3),
|
|
lr=st.floats(
|
|
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
|
|
),
|
|
epsilon=st.floats(
|
|
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
|
|
),
|
|
weight_decay=st.sampled_from([0.0, 0.1]),
|
|
**hu.gcs
|
|
)
|
|
@settings(deadline=10000)
|
|
def test_adagrad(self, inputs, lr, epsilon, weight_decay, gc, dc):
|
|
param, momentum, grad = inputs
|
|
momentum = np.abs(momentum)
|
|
lr = np.array([lr], dtype=np.float32)
|
|
|
|
op = core.CreateOperator(
|
|
"Adagrad",
|
|
["param", "momentum", "grad", "lr"],
|
|
["param", "momentum"],
|
|
epsilon=epsilon,
|
|
weight_decay=weight_decay,
|
|
device_option=gc,
|
|
)
|
|
|
|
self.assertReferenceChecks(
|
|
gc,
|
|
op,
|
|
[param, momentum, grad, lr],
|
|
functools.partial(ref_adagrad, epsilon=epsilon, weight_decay=weight_decay),
|
|
)
|
|
|
|
@given(
|
|
inputs=hu.tensors(n=3),
|
|
lr=st.floats(
|
|
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
|
|
),
|
|
epsilon=st.floats(
|
|
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
|
|
),
|
|
weight_decay=st.sampled_from([0.0, 0.1]),
|
|
**hu.gcs_cpu_only
|
|
)
|
|
@settings(deadline=10000)
|
|
def test_adagrad_output_effective_lr(
|
|
self, inputs, lr, epsilon, weight_decay, gc, dc
|
|
):
|
|
param, momentum, grad = inputs
|
|
momentum = np.abs(momentum)
|
|
lr = np.array([lr], dtype=np.float32)
|
|
|
|
op = core.CreateOperator(
|
|
"Adagrad",
|
|
["param", "momentum", "grad", "lr"],
|
|
["param", "momentum", "effective_lr"],
|
|
epsilon=epsilon,
|
|
weight_decay=weight_decay,
|
|
device_option=gc,
|
|
)
|
|
|
|
self.assertReferenceChecks(
|
|
gc,
|
|
op,
|
|
[param, momentum, grad, lr],
|
|
functools.partial(
|
|
ref_adagrad,
|
|
epsilon=epsilon,
|
|
output_effective_lr=True,
|
|
weight_decay=weight_decay,
|
|
),
|
|
)
|
|
|
|
@given(
|
|
inputs=hu.tensors(n=3),
|
|
lr=st.floats(
|
|
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
|
|
),
|
|
epsilon=st.floats(
|
|
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
|
|
),
|
|
**hu.gcs_cpu_only
|
|
)
|
|
@settings(deadline=10000)
|
|
def test_adagrad_output_effective_lr_and_update(self, inputs, lr, epsilon, gc, dc):
|
|
param, momentum, grad = inputs
|
|
momentum = np.abs(momentum)
|
|
lr = np.array([lr], dtype=np.float32)
|
|
|
|
op = core.CreateOperator(
|
|
"Adagrad",
|
|
["param", "momentum", "grad", "lr"],
|
|
["param", "momentum", "effective_lr", "update"],
|
|
epsilon=epsilon,
|
|
device_option=gc,
|
|
)
|
|
|
|
self.assertReferenceChecks(
|
|
gc,
|
|
op,
|
|
[param, momentum, grad, lr],
|
|
functools.partial(
|
|
ref_adagrad, epsilon=epsilon, output_effective_lr_and_update=True
|
|
),
|
|
)
|
|
|
|
# Suppress filter_too_much health check.
|
|
# Likely caused by `assume` call falling through too often.
|
|
@settings(suppress_health_check=[HealthCheck.filter_too_much], deadline=10000)
|
|
@given(
|
|
inputs=hu.tensors(n=3),
|
|
lr=st.floats(
|
|
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
|
|
),
|
|
epsilon=st.floats(
|
|
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
|
|
),
|
|
weight_decay=st.sampled_from([0.0, 0.1]),
|
|
**hu.gcs
|
|
)
|
|
def test_sparse_adagrad(self, inputs, lr, epsilon, weight_decay, gc, dc):
|
|
adagrad_sparse_test_helper(
|
|
self,
|
|
inputs,
|
|
lr,
|
|
epsilon,
|
|
None,
|
|
ref_adagrad,
|
|
gc,
|
|
dc,
|
|
weight_decay=weight_decay,
|
|
)
|
|
|
|
@given(
|
|
inputs=hu.tensors(n=2),
|
|
lr=st.floats(
|
|
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
|
|
),
|
|
epsilon=st.floats(
|
|
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
|
|
),
|
|
**hu.gcs
|
|
)
|
|
@settings(deadline=10000)
|
|
def test_sparse_adagrad_empty(self, inputs, lr, epsilon, gc, dc):
|
|
param, momentum = inputs
|
|
grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32)
|
|
|
|
ref_using_fp16_values = [False]
|
|
if gc == hu.gpu_do:
|
|
ref_using_fp16_values.append(True)
|
|
|
|
for ref_using_fp16 in ref_using_fp16_values:
|
|
if ref_using_fp16:
|
|
print("test_sparse_adagrad_empty with half precision embedding")
|
|
momentum_i = momentum.astype(np.float16)
|
|
param_i = param.astype(np.float16)
|
|
else:
|
|
print("test_sparse_adagrad_empty with full precision embedding")
|
|
momentum_i = momentum.astype(np.float32)
|
|
param_i = param.astype(np.float32)
|
|
|
|
adagrad_sparse_test_helper(
|
|
self,
|
|
[param_i, momentum_i, grad],
|
|
lr,
|
|
epsilon,
|
|
None,
|
|
ref_adagrad,
|
|
gc,
|
|
dc,
|
|
)
|
|
|
|
# Suppress filter_too_much health check.
|
|
# Likely caused by `assume` call falling through too often.
|
|
@settings(suppress_health_check=[HealthCheck.filter_too_much], deadline=10000)
|
|
@given(
|
|
inputs=hu.tensors(n=3),
|
|
lr=st.sampled_from([0.01, 0.99]),
|
|
epsilon=st.sampled_from([0.01, 0.99]),
|
|
weight_decay=st.sampled_from([0.0, 0.1]),
|
|
counter_halflife=st.sampled_from([-1, 5]),
|
|
**hu.gcs
|
|
)
|
|
def test_row_wise_sparse_adagrad(
|
|
self, inputs, lr, epsilon, weight_decay, counter_halflife, gc, dc
|
|
):
|
|
adagrad_sparse_test_helper(
|
|
self,
|
|
inputs,
|
|
lr,
|
|
epsilon,
|
|
None,
|
|
functools.partial(ref_adagrad, row_wise=True),
|
|
gc,
|
|
dc,
|
|
row_wise=True,
|
|
weight_decay=weight_decay,
|
|
counter_halflife=counter_halflife,
|
|
)
|
|
|
|
@given(
|
|
inputs=hu.tensors(n=2),
|
|
lr=st.floats(
|
|
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
|
|
),
|
|
epsilon=st.floats(
|
|
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
|
|
),
|
|
**hu.gcs
|
|
)
|
|
@settings(deadline=None)
|
|
def test_row_wise_sparse_adagrad_empty(self, inputs, lr, epsilon, gc, dc):
|
|
param, momentum = inputs
|
|
grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32)
|
|
adagrad_sparse_test_helper(
|
|
self,
|
|
[param, momentum, grad],
|
|
lr,
|
|
epsilon,
|
|
None,
|
|
ref_adagrad,
|
|
gc,
|
|
dc,
|
|
row_wise=True,
|
|
)
|