mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Per title Test Plan: Fixes existing tests Reviewed By: robieta Differential Revision: D28690296 fbshipit-source-id: d7b5b5065517373b75d501872814c89b24ec8cfc
200 lines
7.7 KiB
Python
200 lines
7.7 KiB
Python
|
|
|
|
|
|
|
|
|
|
import functools
|
|
|
|
import hypothesis
|
|
from hypothesis import given, settings, HealthCheck
|
|
import hypothesis.strategies as st
|
|
import numpy as np
|
|
|
|
from caffe2.python import core
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import caffe2.python.serialized_test.serialized_test_util as serial
|
|
|
|
|
|
class TestAdadelta(serial.SerializedTestCase):
|
|
@staticmethod
|
|
def ref_adadelta(param_in,
|
|
mom_in,
|
|
mom_delta_in,
|
|
grad, lr,
|
|
epsilon,
|
|
decay,
|
|
using_fp16=False):
|
|
param_in_f32 = param_in
|
|
mom_in_f32 = mom_in
|
|
mom_delta_in_f32 = mom_delta_in
|
|
if(using_fp16):
|
|
param_in_f32 = param_in.astype(np.float32)
|
|
mom_in_f32 = mom_in.astype(np.float32)
|
|
mom_delta_in_f32 = mom_delta_in.astype(np.float32)
|
|
|
|
mom_out = decay * mom_in_f32 + (1.0 - decay) * grad * grad
|
|
new_grad = (np.sqrt(mom_delta_in_f32 + epsilon) /
|
|
np.sqrt(mom_out + epsilon)) * grad
|
|
param_out = param_in_f32 + lr * new_grad
|
|
mom_delta_out = decay * mom_delta_in_f32 + (1.0 - decay
|
|
) * new_grad * new_grad
|
|
if(using_fp16):
|
|
return (param_out.astype(np.float16), mom_out.astype(np.float16),
|
|
mom_delta_out.astype(np.float16))
|
|
else:
|
|
return (param_out.astype(np.float32), mom_out.astype(np.float32),
|
|
mom_delta_out.astype(np.float32))
|
|
|
|
@given(inputs=hu.tensors(n=4),
|
|
lr=hu.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
epsilon=hu.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
decay=hu.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
**hu.gcs)
|
|
@settings(deadline=10000)
|
|
def test_adadelta(self, inputs, lr, epsilon, decay, gc, dc):
|
|
param, moment, moment_delta, grad = inputs
|
|
moment = np.abs(moment)
|
|
moment_delta = np.abs(moment_delta)
|
|
lr = np.array([lr], dtype=np.float32)
|
|
|
|
op = core.CreateOperator(
|
|
"Adadelta",
|
|
["param", "moment", "moment_delta", "grad", "lr"],
|
|
["param", "moment", "moment_delta"],
|
|
epsilon=epsilon,
|
|
decay=decay,
|
|
device_option=gc,
|
|
)
|
|
|
|
self.assertReferenceChecks(
|
|
gc, op,
|
|
[param, moment, moment_delta, grad, lr],
|
|
functools.partial(self.ref_adadelta, epsilon=epsilon, decay=decay))
|
|
|
|
# Suppress filter_too_much health check.
|
|
# Likely caused by `assume` call falling through too often.
|
|
@settings(suppress_health_check=[HealthCheck.filter_too_much], deadline=10000)
|
|
@given(inputs=hu.tensors(n=4),
|
|
lr=hu.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
epsilon=hu.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
decay=hu.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
**hu.gcs)
|
|
def test_sparse_adadelta(self, inputs, lr, epsilon, decay, gc, dc):
|
|
param, moment, moment_delta, grad = inputs
|
|
moment = np.abs(moment)
|
|
moment_delta = np.abs(moment_delta)
|
|
lr = np.array([lr], dtype=np.float32)
|
|
|
|
# Create an indexing array containing values that are lists of indices,
|
|
# which index into grad
|
|
indices = np.random.choice(np.arange(grad.shape[0]),
|
|
size=np.random.randint(grad.shape[0]), replace=False)
|
|
|
|
# Sparsify grad
|
|
grad = grad[indices]
|
|
|
|
op = core.CreateOperator(
|
|
"SparseAdadelta",
|
|
["param", "moment", "moment_delta", "indices", "grad", "lr"],
|
|
["param", "moment", "moment_delta"],
|
|
epsilon=epsilon,
|
|
decay=decay,
|
|
device_option=gc)
|
|
|
|
def ref_sparse(param, moment, moment_delta, indices, grad, lr, decay,
|
|
ref_using_fp16):
|
|
param_out = np.copy(param)
|
|
moment_out = np.copy(moment)
|
|
moment_delta_out = np.copy(moment_delta)
|
|
for i, index in enumerate(indices):
|
|
param_out[index], moment_out[index], moment_delta_out[
|
|
index] = self.ref_adadelta(param[index], moment[index],
|
|
moment_delta[index], grad[i], lr,
|
|
epsilon, decay, ref_using_fp16)
|
|
return (param_out, moment_out, moment_delta_out)
|
|
|
|
ref_using_fp16_values = [False]
|
|
if gc == hu.gpu_do:
|
|
ref_using_fp16_values.append(True)
|
|
|
|
for ref_using_fp16 in ref_using_fp16_values:
|
|
moment_i = None
|
|
moment_delta_i = None
|
|
param_i = None
|
|
if(ref_using_fp16):
|
|
moment_i = moment.astype(np.float16)
|
|
moment_delta_i = moment_delta.astype(np.float16)
|
|
param_i = param.astype(np.float16)
|
|
else:
|
|
moment_i = moment.astype(np.float32)
|
|
moment_delta_i = moment_delta.astype(np.float32)
|
|
param_i = param.astype(np.float32)
|
|
|
|
self.assertReferenceChecks(gc, op, [
|
|
param_i, moment_i, moment_delta_i, indices, grad, lr, decay,
|
|
ref_using_fp16
|
|
], ref_sparse)
|
|
|
|
@given(inputs=hu.tensors(n=3),
|
|
lr=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
epsilon=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
decay=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
**hu.gcs)
|
|
@settings(deadline=None)
|
|
def test_sparse_adadelta_empty(self, inputs, lr, epsilon, decay, gc, dc):
|
|
param, moment, moment_delta = inputs
|
|
moment = np.abs(moment)
|
|
lr = np.array([lr], dtype=np.float32)
|
|
|
|
grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32)
|
|
indices = np.empty(shape=(0,), dtype=np.int64)
|
|
|
|
hypothesis.note('indices.shape: %s' % str(indices.shape))
|
|
|
|
op = core.CreateOperator(
|
|
"SparseAdadelta",
|
|
["param", "moment", "moment_delta", "indices", "grad", "lr"],
|
|
["param", "moment", "moment_delta"],
|
|
epsilon=epsilon,
|
|
decay=decay,
|
|
device_option=gc)
|
|
|
|
def ref_sparse_empty(param, moment, moment_delta, indices, grad, lr, decay):
|
|
param_out = np.copy(param)
|
|
moment_out = np.copy(moment)
|
|
moment_delta_out = np.copy(moment_delta)
|
|
return (param_out, moment_out, moment_delta_out)
|
|
|
|
ref_using_fp16_values = [False]
|
|
if gc == hu.gpu_do:
|
|
ref_using_fp16_values.append(True)
|
|
|
|
for ref_using_fp16 in ref_using_fp16_values:
|
|
moment_i = None
|
|
moment_delta_i = None
|
|
param_i = None
|
|
if(ref_using_fp16):
|
|
moment_i = moment.astype(np.float16)
|
|
moment_delta_i = moment_delta.astype(np.float16)
|
|
param_i = param.astype(np.float16)
|
|
else:
|
|
moment_i = moment.astype(np.float32)
|
|
moment_delta_i = moment_delta.astype(np.float32)
|
|
param_i = param.astype(np.float32)
|
|
|
|
self.assertReferenceChecks(
|
|
gc,
|
|
op,
|
|
[param_i, moment_i, moment_delta_i, indices, grad, lr, decay],
|
|
ref_sparse_empty
|
|
)
|