pytorch/test/test_proxy_tensor.py
Edward Z. Yang 8fae7027b3 Don't introduce new overload for SymInt (#83628)
Previously, we introduced new SymInt overloads for every function we wanted.  This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.

This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.

This is BC-breaking in the following ways:

* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change.  Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually.  This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.

This is not BC-breaking in the following ways:

* The user facing C++ API remains compatible.  Even if a function changes from int to SymInt, the default C++ binding still takes only ints.  (e.g., at::empty(IntArrayRef, ...).  To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.

Structure of the PR:

* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
  * The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
    * When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
    * In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
  * In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh
2022-08-23 22:04:07 +00:00

1225 lines
68 KiB
Python

# Owner(s): ["module: ProxyTensor"]
from torch.testing._internal.common_utils import TestCase, run_tests
import torch
import unittest
import warnings
import torch.nn.utils._stateless as stateless
from collections.abc import Iterable
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.common_methods_invocations import DecorateInfo
from torch.testing._internal.common_methods_invocations import op_db, wrapper_set_seed
from torch._subclasses.fake_tensor import DynamicOutputShapeException
from torch._decomp import decomposition_table
from torch.testing._internal.common_device_type import ops
from torch._C import _disabled_torch_function_impl
from torch.fx.experimental.proxy_tensor import make_fx, DecompositionInterpreter, get_isolated_graphmodule
from torch.utils._pytree import tree_map
from torch import nn
import re
import types
import functools
aten = torch.ops.aten
try:
import sympy # noqa: F401
HAS_SYMPY = True
except ImportError:
HAS_SYMPY = False
skipIfNoSympy = unittest.skipIf(not HAS_SYMPY, "no sympy")
def process_failures():
"""
Takes file containing failures like
FAILED test/test_proxy_tensor.py::TestProxyTensorOpInfoCPU::test_make_fx_symbolic_exhaustive___getitem___cpu_float32 - RuntimeError: aten.size.default - couldn't find symbolic meta function/decomposition # noqa: B950
and processes them into a list of opinfo xfails
"""
f = open('pytest_failures')
failures = f.readlines()
failures = [i.strip() for i in failures]
def process_failure_string(s, matcher):
out = re.search(matcher, s)
return out.groups()
SYMBOLIC_TRACE_MATCH = r'exhaustive_(.*)_cpu.*: (.*)'
failures = [process_failure_string(s, SYMBOLIC_TRACE_MATCH) for s in failures]
def create_normalized_name(op):
if op.variant_test_name == '':
s = op.name
else:
s = f"{op.name}.{op.variant_test_name}"
return s.replace('.', '_')
remap_opinfo = {create_normalized_name(op): (op.name, op.variant_test_name) for op in op_db}
print("symbolic_tensor_failures = {")
for failure, reason in failures:
print(f" xfail{remap_opinfo[failure]}, # {reason}")
print("}")
def copy_func(f):
"""Based on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard)"""
g = types.FunctionType(f.__code__, f.__globals__, name=f.__name__,
argdefs=f.__defaults__,
closure=f.__closure__)
g = functools.update_wrapper(g, f)
g.__kwdefaults__ = f.__kwdefaults__
return g
# Copied from functorch
def xfail(op_name, variant_name='', *, device_type=None, dtypes=None):
return (op_name, variant_name, device_type, dtypes, True)
def skip(op_name, variant_name='', *, device_type=None, dtypes=None):
return (op_name, variant_name, device_type, dtypes, False)
def skipOps(test_case_name, base_test_name, to_skip):
all_opinfos = op_db
for xfail in to_skip:
op_name, variant_name, device_type, dtypes, expected_failure = xfail
matching_opinfos = [o for o in all_opinfos
if o.name == op_name and o.variant_test_name == variant_name]
assert len(matching_opinfos) >= 1, f"Couldn't find OpInfo for {xfail}"
for opinfo in matching_opinfos:
decorators = list(opinfo.decorators)
if expected_failure:
decorator = DecorateInfo(unittest.expectedFailure,
test_case_name, base_test_name,
device_type=device_type, dtypes=dtypes)
decorators.append(decorator)
else:
decorator = DecorateInfo(unittest.skip("Skipped!"),
test_case_name, base_test_name,
device_type=device_type, dtypes=dtypes)
decorators.append(decorator)
opinfo.decorators = tuple(decorators)
# This decorator doesn't modify fn in any way
def wrapped(fn):
return fn
return wrapped
USE_TORCHVISION = False
try:
import torchvision
USE_TORCHVISION = True
except ImportError:
warnings.warn("Couldn't import torchvision. Some of our tests use it, try "
"to install it with commands from pytorch.org, post-fixed with "
"`--no-deps` to avoid overwriting the pytorch installation",
UserWarning)
def _create_new_input(x):
if not isinstance(x, torch.Tensor):
return x
if x.dtype != torch.float:
return x + 1
if x.is_leaf:
return torch.rand_like(x, requires_grad=x.requires_grad)
else:
return torch.rand_like(x)
"""
Delays a cos being executed on the unwraptensor until its used. Simulates a CommTensor used
"""
class UnwrapTensor(torch.Tensor):
@staticmethod
def __new__(cls, tensor: torch.Tensor):
r = torch.Tensor._make_wrapper_subclass(
cls,
tensor.size(),
dtype=tensor.dtype,
device=tensor.device,
layout=tensor.layout,
requires_grad=tensor.requires_grad,
)
r._tensor = tensor
return r
def __repr__(self):
# TODO: consider all_gather the local tensors for better debugging
return f"UnwrapTensor({self._tensor})"
__torch_function__ = _disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
def unwrap(e):
ret = e
if isinstance(e, UnwrapTensor):
ret = e._tensor.cos()
return ret
args = tree_map(unwrap, args)
kwargs = tree_map(unwrap, kwargs)
return func(*args, **kwargs)
class TestGenericProxyTensor(TestCase):
# WARNING: if any of your inputs are index tensors, DO NOT use this
# function
def _test(self, f, inps):
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(*inps)
new_inps = tree_map(_create_new_input, inps)
r1 = fx_f(*new_inps)
r2 = f(*new_inps)
self.assertEqual(r1, r2)
def test_make_fx_simple(self):
def f(x):
return torch.sin(x)
self._test(f, (torch.randn(3),))
def test_scalar_device(self, device='cpu'):
def f(a, b):
return a + b
self._test(f, [torch.randn(3, device=device), torch.tensor(5)])
def test_isolated_graphmodule(self):
def is_any_sum(gm):
return any(node.target == torch.ops.aten.sum.default for node in gm.graph.nodes)
def is_any_digamma(gm):
return any(node.target == torch.ops.aten.digamma.default for node in gm.graph.nodes)
def is_any_sigmoid(gm):
return any(node.target == torch.ops.aten.sigmoid.default for node in gm.graph.nodes)
def inner(x):
return torch.sum(x)
def f(x):
gm = get_isolated_graphmodule(inner, (x,), {})
self.assertTrue(is_any_sum(gm))
return x + torch.randn(x.shape)
# get_isolated_graphmodule uses make_fx internally that shouldn't be traced
# by the outer make_fx call
traced = make_fx(f)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
# When factory functions are used, they should not be traced
# by the outer make_fx call
def inner_with_factory():
val = torch.tensor(float(1))
val.add_(2)
return torch.full((10, 10), val).sum()
def f1(x):
gm = get_isolated_graphmodule(inner_with_factory, (), {})
self.assertTrue(is_any_sum(gm))
return torch.sigmoid(x)
def f2(x):
gm = get_isolated_graphmodule(f1, (x,), {})
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify nested make_fx calls don't make factory functions to be leaked
# into the outer graph
def f2(x):
gm = make_fx(f1)(x)
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertTrue(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify interaction with non-ProxyTensor modes
from torch.testing._internal.logging_tensor import LoggingTensorMode
def f1_logging(x):
with LoggingTensorMode():
gm = get_isolated_graphmodule(inner_with_factory, (), {})
self.assertTrue(is_any_sum(gm))
return torch.sigmoid(x)
def f2_logging(x):
with LoggingTensorMode(), LoggingTensorMode():
gm = get_isolated_graphmodule(f1_logging, (x,), {})
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2_logging)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify interaction with another tensor subclass
# This case currently doesn't work and should raise an error
# See: https://github.com/pytorch/pytorch/pull/81764#issuecomment-1200472068
from torch.testing._internal.logging_tensor import LoggingTensor
def f1_logging_tensor(x):
gm = get_isolated_graphmodule(inner_with_factory, (), {})
self.assertTrue(is_any_sum(gm))
return torch.sigmoid(x)
def f2_logging_tensor(x):
x = LoggingTensor(x)
gm = get_isolated_graphmodule(f1_logging_tensor, (x,), {})
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2_logging_tensor)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced)) # this fails, sigmoid is traced with LoggingTensor
self.assertTrue(is_any_digamma(traced))
def test_proxy_tensor_mode_with_decomp_table_preserves_proxy(self):
def f(x):
y = x.new_zeros(x.size())
y.copy_(x)
return y
def _new_zeros_decomp(inp, size, dtype=None, layout=None, device=None, pin_memory=None):
return torch.zeros(size, dtype=inp.dtype, device=inp.device)
factory_func_decomp = {torch.ops.aten.new_zeros.default: _new_zeros_decomp}
# When new_zeros() decomposes into torch.zero(), we expect ProxyTensorMode
# to still be (re-entrantly) enabled, so that the `torch.zero()` call
# returns a ProxyTensor.
out = make_fx(f, decomposition_table=factory_func_decomp)(torch.ones(2))
self.assertExpectedInline(out.code, """\
def forward(self, x_1):
zeros = torch.ops.aten.zeros.default([2], dtype = torch.float32, device = device(type='cpu'), pin_memory = False)
copy__default = torch.ops.aten.copy_.default(zeros, x_1); zeros = x_1 = None
return copy__default
""")
def test_make_fx_reentrant_dispatch(self):
def f(x):
return torch.ops.aten.norm.Scalar(x, 2.0)
def norm_decomp(x, p=2.0):
if p != 2.0:
raise RuntimeError("can't handle with p != 2")
return torch.sqrt(torch.sum(torch.square(x)))
decomp = {torch.ops.aten.norm.Scalar: norm_decomp}
traced = make_fx(f, decomposition_table=decomp, tracing_mode=self.tracing_mode)(torch.rand(3))
for n in traced.graph.nodes:
self.assertTrue("square" not in str(n.target))
self.assertTrue("norm" not in str(n.target))
@unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
def test_resnet18_backward_trace(self):
mod = torchvision.models.resnet18()
# An old version of this test called the module directly. This works
# for tracing_mode == "real", but for fake tensors, we also have to
# ensure that the parameters and buffers get wrapped in fake tensors
# because free fake tensors are not supported. Fortunately stateless
# does precisely this for us.
def f(x, params, buffers):
for p in params.values():
p.grad = None
loss = stateless.functional_call(mod, {**params, **buffers}, (x,)).sum()
# I could have done this with the functional API, but there is
# plenty of exercising this; I want to show mutating API still
# works
loss.backward()
return [p.grad for p in params.values()]
inp = torch.randn(3, 3, 250, 250)
self._test(f, [inp, dict(mod.named_parameters()), dict(mod.named_buffers())])
def test_varargs(self):
def f(*args):
return sum(args)
self._test(f, [torch.randn(2), torch.randn(2)])
def test_proxy_tensor(self):
def f_grad(x):
val = x.cos().cos().sum()
return torch.autograd.grad(val, x)
def f_backward(x):
val = x.cos().cos().sum()
val.backward()
return x.grad
for f in [f_grad, f_backward]:
self._test(f, [torch.randn(3, requires_grad=True)])
def test_inplace_metadata(self):
def f(x):
x = x.clone()
x.unsqueeze_(-1)
assert x.shape[-1] == 1
return x
self._test(f, [torch.randn(5)])
def test_mode_tracing_factory_function(self):
def f(x):
return x + torch.randn(x.shape)
# default behavior should trace factory functions
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3))
self.assertTrue(
any(
node.target == aten.randn.default
for node in traced.graph.nodes
)
)
def test_make_fx_overloads(self):
def f(x):
return x.cos() + torch.randn(x.shape)
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3))
self.assertTrue(all([isinstance(node.target, torch._ops.OpOverload)
for node in traced.graph.nodes if node.op == 'call_function']))
def test_tensor_constants(self):
def f():
val = torch.tensor(float('inf'))
return torch.full((100, 100), val)
self._test(f, [])
def test_allclose(self):
def f(a, b):
return torch.allclose(a, b)
self.assertRaisesRegex(
RuntimeError, "data-dependent",
lambda: make_fx(f, tracing_mode=self.tracing_mode)(
torch.zeros(3), torch.zeros(3)
)
)
def test_constant_proxy_tensor_mut(self):
def f():
val = torch.tensor(float(1))
val.add_(2)
return torch.full((100, 100), val)
g = make_fx(f, tracing_mode=self.tracing_mode)()
self.assertEqual(g(), f())
# In case we mutated shared state in the g graph!
self.assertEqual(g(), f())
def test_constant_unbind(self):
def f():
val = torch.tensor([2])
r, = torch.unbind(val, 0)
return r.item()
g = make_fx(f, tracing_mode=self.tracing_mode)()
self.assertEqual(g(), f())
def test_constant_blowup(self):
def f():
val = torch.tensor([2])
blowup = val.repeat(1000)
return blowup.sum().item()
self.assertRaisesRegex(
RuntimeError, "data-dependent",
lambda: make_fx(f, tracing_mode=self.tracing_mode)()
)
def test_constant_random(self):
def f():
val = torch.tensor([2.0])
val.normal_()
return val.item()
self.assertRaisesRegex(
RuntimeError, "data-dependent",
lambda: make_fx(f, tracing_mode=self.tracing_mode)()
)
def test_decomposition_interpreter(self):
def fn(x):
return torch.nn.functional.silu(x)
x = torch.rand((4, 4))
fx_module = make_fx(fn, tracing_mode=self.tracing_mode, decomposition_table=None)(x)
found_silu = False
for n in fx_module.graph.nodes:
if n.target == torch.ops.aten.silu or n.target == torch.ops.aten.silu.default:
found_silu = True
self.assertTrue(found_silu)
new_graph = torch.fx.Graph()
silu_decomp_table = {torch.ops.aten.silu.default: decomposition_table[torch.ops.aten.silu.default]}
DecompositionInterpreter(
fx_module,
new_graph=new_graph,
decomposition_table=silu_decomp_table,
).run(x)
decomposed_module = torch.fx.GraphModule(fx_module, new_graph)
for n in decomposed_module.graph.nodes:
self.assertTrue(n.target != torch.ops.aten.silu)
self.assertTrue(n.target != torch.ops.aten.silu.default)
self.assertEqual(fx_module(x), decomposed_module(x))
def test_make_fx_model_fwd_bwd(self):
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(5, 5)
def forward(self, x):
return self.linear(x).relu()
model = Foo()
def f(x, params):
out = stateless.functional_call(model, params, x).sum()
out.backward()
return list(params.values())
input = torch.randn(3, 5, requires_grad=True)
params = dict(model.named_parameters())
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(input, params)
# fx may change the order of parameters in list, so using set() to compare
self.assertTrue(
torch.allclose(fx_f(input, params)[0], f(input, params)[0])
or
torch.allclose(fx_f(input, params)[0], f(input, params)[1])
)
self.assertTrue(
torch.allclose(fx_f(input, params)[1], f(input, params)[0])
or
torch.allclose(fx_f(input, params)[1], f(input, params)[1])
)
def test_make_fx_model_fwd_bwd_wgtupdate(self):
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(5, 5)
def forward(self, x):
return self.linear(x).relu()
model = Foo()
def f(args, params, buffers):
for p in params.values():
p.grad = None
if not isinstance(args, Iterable):
args = [args]
params_and_buffers = {**params, **buffers}
out = stateless.functional_call(model, params_and_buffers, args)
out.sum().backward()
return [p - 1e-4 * p.grad for p in params.values()]
input = torch.randn(3, 5, requires_grad=True)
params = dict(model.named_parameters())
buffers = dict(model.named_buffers())
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(input, params, buffers)
# fx may change the order of parameters in list, so using set() to compare
# also there is a numerical difference in results so changing atol from 1e-08 to 1e-03
self.assertTrue(
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[0], atol=1e-03)
or
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[1], atol=1e-03)
)
self.assertTrue(
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[0], atol=1e-03)
or
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[1], atol=1e-03)
)
def test_trace_subclasses(self):
def f(x):
x = UnwrapTensor(x)
y = x * 2
return y
inp = [torch.randn(5)]
self._test(f, inp)
def test_partial_decomp(self):
def f(a, b, c):
x = torch.addmm(a, b, c)
y = torch.addmm(a, b, c, beta=2, alpha=1)
return x + y
inps = [torch.randn(5, 5), torch.randn(5, 5), torch.randn(5, 5)]
fx_g = make_fx(f)(*inps)
def addmm(a, b, c, beta=1, alpha=1):
if beta == 1 and alpha == 1:
return NotImplemented
return beta * a + alpha * (b @ c)
decomposed_fx = make_fx(f, {aten.addmm.default: addmm})(*inps)
self.assertEqual(fx_g(*inps), decomposed_fx(*inps))
self.assertEqual(len([n for n in fx_g.graph.nodes if n.target == aten.addmm.default]), 2)
self.assertEqual(len([n for n in decomposed_fx.graph.nodes if n.target == aten.addmm.default]), 1)
class TestGenericProxyTensorReal(TestGenericProxyTensor):
tracing_mode = "real"
class TestGenericProxyTensorFake(TestGenericProxyTensor):
tracing_mode = "fake"
def xfail_inherited_tests(tests):
"""
Given a list of test names which are defined by a superclass of the
class this decorates, mark them as expected failure. This is useful
if you are doing poor man's parameterized tests by subclassing a generic
test class.
"""
def deco(cls):
for t in tests:
# NB: expectedFailure operates by mutating the method in question,
# which is why you have to copy the function first
setattr(cls, t, unittest.expectedFailure(copy_func(getattr(cls, t))))
return cls
return deco
@skipIfNoSympy
@xfail_inherited_tests([
"test_inplace_metadata",
"test_mode_tracing_factory_function",
"test_make_fx_overloads",
"test_make_fx_model_fwd_bwd_wgtupdate",
"test_make_fx_model_fwd_bwd",
"test_proxy_tensor",
"test_resnet18_backward_trace",
"test_trace_subclasses",
])
class TestGenericProxyTensorSymbolic(TestGenericProxyTensor):
tracing_mode = "symbolic"
del TestGenericProxyTensor
class TestRealProxyTensor(TestCase):
pass
class TestFakeProxyTensor(TestCase):
def test_issue82547(self):
x = nn.Parameter(torch.randn(3, 3))
def f():
return torch.ops.aten.t.default(x)
self.assertRaisesRegex(Exception, "non-Fake Tensor", lambda: make_fx(f, tracing_mode="fake")())
class A(torch.Tensor):
pass
x = A(torch.randn(3, 3))
self.assertRaisesRegex(TypeError, "no implementation found", lambda: make_fx(f, tracing_mode="fake")())
def test_use_fake_and_tensor(self):
def f(x, y):
z = torch.tensor([2.0, 3.0])
return x + y + z
g = make_fx(f, tracing_mode="fake")(torch.randn(2), torch.randn(2))
x, y = torch.randn(2), torch.randn(2)
self.assertEqual(g(x, y), f(x, y))
# TODO: Need to test the guards themselves specifically as well
@skipIfNoSympy
class TestSymbolicTracing(TestCase):
def _test_dynamic(self, fn, trace_inputs, test_inputs, assert_eq=True):
"""
Tests fn traced with trace_inputs against test_inputs
Also returns shape env
"""
trace_inputs = [torch.randn(shape) for shape in trace_inputs]
traced_f = make_fx(fn, tracing_mode="symbolic")(*trace_inputs)
for input in test_inputs:
input = [torch.randn(shape) for shape in input]
rx, ry = traced_f(*input), fn(*input)
if assert_eq:
self.assertEqual(rx, ry)
return traced_f.shape_env
def test_unary(self):
def f(x):
assert x.shape[0] < 20
return x.cos()
test_inputs = []
test_inputs.append([(2, 5)])
test_inputs.append([(6, 8)])
shape_env = self._test_dynamic(f, [(3, 4)], test_inputs)
self.assertTrue(shape_env.evaluate_guards_for_args(torch.randn(4, 5)))
self.assertFalse(shape_env.evaluate_guards_for_args(torch.randn(25, 5)))
assert len(shape_env.guards) == 1
def test_binary_broadcast(self):
def f(a, b):
c = a * b
return c
test_inputs = []
test_inputs.append([(1, 5), (3, 1)])
test_inputs.append([(1, 4), (4, 1)])
shape_env = self._test_dynamic(f, [(1, 2), (3, 1)], test_inputs)
assert len(shape_env.guards) == 0
def test_multiply_shape(self):
def f(a):
return torch.empty(a.shape[0] * 2)
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1):
sym_size = torch.ops.aten.sym_size(a_1, 0); a_1 = None
mul = sym_size * 2; sym_size = None
empty = torch.ops.aten.empty.memory_format([mul], device = device(type='cpu'), pin_memory = False); mul = None
sym_size_1 = torch.ops.aten.sym_size(empty, 0)
return empty""")
def test_cat(self):
def f(a, b):
val = torch.mul(a, b)
out = torch.cat([val, val])
if out.shape[0] * out.shape[1] > 20:
out = out.cos()
return out
test_inputs = []
test_inputs.append([(1, 5), (6, 1)])
test_inputs.append([(1, 4), (3, 1)])
shape_env = self._test_dynamic(f, [(1, 6), (8, 1)], test_inputs)
self.assertTrue(shape_env.evaluate_guards_for_args(torch.randn(1, 10), torch.randn(6, 1)))
self.assertFalse(shape_env.evaluate_guards_for_args(torch.randn(1, 2), torch.randn(4, 1)))
assert len(shape_env.guards) == 1
def test_new_empty(self):
def f(a, b):
return a.new_empty(b.shape[0], b.shape[1] * 2)
self._test_dynamic(f, [(2, 4), (4, 5)], [[(2, 3), (5, 7)], [(3, 7), (9, 3)]], assert_eq=False)
def test_expand(self):
def f(a):
b = torch.mul(a, a)
c = b.expand(a.shape)
return c
self._test_dynamic(f, [(3,)], [[(3,)], [(4,)], [(2,)]])
self._test_dynamic(f, [(5, 1)], [[(4, 1)], [(3, 1)], [(6, 1)]])
make_fx_failures = {
# unknown
xfail('allclose'),
xfail('equal'),
xfail('linalg.eigvals'),
xfail('nn.functional.max_pool1d', device_type='cpu'),
# empty
skip('new_empty'),
skip('empty_like'),
skip('empty'),
# flaky
skip('linalg.lstsq', 'grad_oriented'),
skip('nn.functional.max_unpool1d', '', device_type='cpu'),
skip('nn.functional.max_unpool2d', '', device_type='cpu'),
skip('nn.functional.max_unpool3d', '', device_type='cpu'),
skip('linalg.lstsq'), # flaky, probably just a precision issue
# data-dependent control flow
xfail('cov'),
xfail('istft'),
xfail('nn.functional.gaussian_nll_loss'),
xfail('tensor_split'),
xfail('corrcoef'),
xfail('quantile'),
xfail('nanquantile'),
# Seems like it's creating a sparse tensor that isn't captured by tensor.is_sparse
xfail('sparse.sampled_addmm'),
# ???
xfail('nn.functional.ctc_loss'),
# proxy tensor doesn't support sparse correctly right now
skip('to_sparse'),
# segfaults
skip('block_diag'),
}
fake_tensor_failures = {
# FakeTensor fallback doesn't work
xfail('segment_reduce', 'lengths'),
xfail('multinomial'),
xfail('mvlgamma', 'mvlgamma_p_1'),
xfail('mvlgamma', 'mvlgamma_p_3'),
xfail('mvlgamma', 'mvlgamma_p_5'),
xfail('cholesky'),
xfail('cholesky_inverse'),
# ASAN failures due to divide by 0
skip('nn.functional.nll_loss'),
}
symbolic_tensor_failures = {
# Needs complex-value support
xfail('polar'),
xfail('complex'),
xfail('linalg.eig'),
xfail('__getitem__', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('__rmatmul__', ''), # aten.new_empty.default - couldn't find symbolic meta function/decomposition
xfail('_masked.amax', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.amin', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.argmax', ''), # aten.argmax.default - couldn't find symbolic meta function/decomposition
xfail('_masked.argmin', ''), # aten.argmin.default - couldn't find symbolic meta function/decomposition
xfail('_masked.cumprod', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.cumsum', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.log_softmax', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.logaddexp', ''), # aten.logaddexp.default - couldn't find symbolic meta function/decomposition
xfail('_masked.mean', ''), # ones() received an invalid combination of arguments - got (torch.Size, device=torch.device, ...
xfail('_masked.median', ''), # aten.nanmedian.dim - couldn't find symbolic meta function/decomposition
xfail('_masked.norm', ''), # aten.linalg_vector_norm.default - couldn't find symbolic meta function/decomposition
xfail('_masked.normalize', ''), # aten.linalg_vector_norm.default - couldn't find symbolic meta function/decomposition
xfail('_masked.prod', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.softmax', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.softmin', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.std', ''), # ones() received an invalid combination of arguments - got (torch.Size, device=torch.device, d...
xfail('_masked.sum', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.var', ''), # ones() received an invalid combination of arguments - got (torch.Size, device=torch.device, d...
xfail('addmm', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
xfail('addmm', 'decomposed'), # aten.mm.default - couldn't find symbolic meta function/decomposition
xfail('addmv', ''), # aten.addmv.default - couldn't find symbolic meta function/decomposition
xfail('addr', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('all', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
xfail('aminmax', ''), # aten.aminmax.default - couldn't find symbolic meta function/decomposition
xfail('argmax', ''), # aten.argmax.default - couldn't find symbolic meta function/decomposition
xfail('argmin', ''), # aten.argmin.default - couldn't find symbolic meta function/decomposition
xfail('argsort', ''), # aten.sort.default - couldn't find symbolic meta function/decomposition
xfail('argwhere', ''), # aten.nonzero.default - couldn't find symbolic meta function/decomposition
xfail('as_strided', ''), # aten.as_strided.default - couldn't find symbolic meta function/decomposition
xfail('as_strided_scatter', ''), # aten.as_strided_scatter.default - couldn't find symbolic meta function/decomposition
xfail('baddbmm', ''), # aten.baddbmm.default - couldn't find symbolic meta function/decomposition
xfail('bernoulli', ''), # aten.bernoulli.default - couldn't find symbolic meta function/decomposition
xfail('bfloat16', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('bmm', ''), # aten.bmm.default - couldn't find symbolic meta function/decomposition
xfail('bool', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('broadcast_tensors', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('bucketize', ''), # aten.bucketize.Tensor - couldn't find symbolic meta function/decomposition
xfail('byte', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('cartesian_prod', ''), # Tensors of type TensorImpl do not have numel
xfail('cdist', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('chalf', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('char', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('cholesky_solve', ''), # Could not run 'aten::_cholesky_solve_helper' with arguments from the 'Meta' back...
xfail('chunk', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('clone', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
xfail('column_stack', ''), # Tensors of type TensorImpl do not have numel
xfail('constant_pad_nd', ''), # aten.fill.Scalar - couldn't find symbolic meta function/decomposition
xfail('count_nonzero', ''), # Could not run 'aten::count_nonzero.dim_IntList' with arguments from the 'Meta' ba...
xfail('cross', ''), # aten.linalg_cross.default - couldn't find symbolic meta function/decomposition
xfail('cummax', ''), # aten.cummax.default - couldn't find symbolic meta function/decomposition
xfail('cummin', ''), # aten.cummin.default - couldn't find symbolic meta function/decomposition
xfail('cumprod', ''), # aten.cumprod.default - couldn't find symbolic meta function/decomposition
xfail('cumsum', ''), # aten.cumsum.default - couldn't find symbolic meta function/decomposition
xfail('cumulative_trapezoid', ''), # aten.slice.Tensor - couldn't find symbolic meta function/decomposition
xfail('deg2rad', ''), # aten.deg2rad.default - couldn't find symbolic meta function/decomposition
xfail('diag_embed', ''), # aten.diag_embed.default - couldn't find symbolic meta function/decomposition
xfail('diagflat', ''), # Tensors of type TensorImpl do not have numel
xfail('diagonal', ''), # aten.diagonal.default - couldn't find symbolic meta function/decomposition
xfail('diagonal_scatter', ''), # aten.diagonal_scatter.default - couldn't find symbolic meta function/decomposition
xfail('diff', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
xfail('dist', ''), # aten.dist.default - couldn't find symbolic meta function/decomposition
xfail('double', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('dsplit', ''), # aten.slice.Tensor - couldn't find symbolic meta function/decomposition
xfail('eig', ''), # aten.eig.default - couldn't find symbolic meta function/decomposition
xfail('einsum', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('expand_as', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.fft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.fft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.fftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.fftshift', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.hfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.hfft', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('fft.hfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ifft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ifft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ifftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ifftshift', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ihfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ihfft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ihfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.irfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.irfft', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('fft.irfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.rfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.rfft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.rfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fill', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('flatten', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('unflatten', ''), # RuntimeError: Trying to call aten.size on a tensor with symbolic shapes...
xfail('float', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('frexp', ''), # aten.frexp.Tensor - couldn't find symbolic meta function/decomposition
xfail('full_like', ''), # aten.full_like.default - couldn't find symbolic meta function/decomposition
xfail('gather', ''), # aten.gather.default - couldn't find symbolic meta function/decomposition
xfail('geqrf', ''), # aten.geqrf.default - couldn't find symbolic meta function/decomposition
xfail('gradient', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('half', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('histc', ''), # Could not run 'aten::histc' with arguments from the 'Meta' backend. This could be because...
xfail('histogram', ''), # Could not run 'aten::histogram.bin_ct' with arguments from the 'Meta' backend. This c...
xfail('histogramdd', ''), # aten._histogramdd_bin_edges.default - couldn't find symbolic meta function/decomposition
xfail('hsplit', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('i0', ''), # aten.i0.default - couldn't find symbolic meta function/decomposition
xfail('index_add', ''), # Float
xfail('index_copy', ''), # Expected a long tensor for index, but got Float
xfail('index_fill', ''), # aten.index_fill.int_Scalar - couldn't find symbolic meta function/decomposition
xfail('index_put', ''), # aten.index_put.default - couldn't find symbolic meta function/decomposition
xfail('index_reduce', ''), # Float
xfail('inner', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('int', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('inverse', ''), # Tensors of type TensorImpl do not have numel
xfail('isclose', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('isin', ''), # aten.isin.Tensor_Tensor - couldn't find symbolic meta function/decomposition
xfail('isreal', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
xfail('kron', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('kthvalue', ''), # aten.kthvalue.default - couldn't find symbolic meta function/decomposition
xfail('lerp', ''), # aten.lerp.Scalar - couldn't find symbolic meta function/decomposition
xfail('linalg.cholesky', ''), # aten.linalg_cholesky_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.cholesky_ex', ''), # aten.linalg_cholesky_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.cond', ''), # Tensors of type TensorImpl do not have numel
xfail('linalg.cross', ''), # aten.linalg_cross.default - couldn't find symbolic meta function/decomposition
xfail('linalg.det', ''), # aten._linalg_det.default - couldn't find symbolic meta function/decomposition
xfail('linalg.eigh', ''), # aten._linalg_eigh.default - couldn't find symbolic meta function/decomposition
xfail('linalg.eigvalsh', ''), # aten._linalg_eigh.default - couldn't find symbolic meta function/decomposition
xfail('linalg.householder_product', ''), # aten.linalg_householder_product.default - couldn't find symbolic meta funct...
xfail('linalg.inv', ''), # aten.linalg_inv_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.inv_ex', ''), # aten.linalg_inv_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.ldl_factor', ''), # aten.linalg_ldl_factor_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.ldl_factor_ex', ''), # aten.linalg_ldl_factor_ex.default - couldn't find symbolic meta function/decompos...
xfail('linalg.ldl_solve', ''), # aten.linalg_ldl_solve.default - couldn't find symbolic meta function/decomposition
xfail('linalg.lu', ''), # aten.linalg_lu.default - couldn't find symbolic meta function/decomposition
xfail('linalg.lu_factor', ''), # aten.linalg_lu_factor_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.lu_factor_ex', ''), # aten.linalg_lu_factor_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.lu_solve', ''), # aten.linalg_lu_solve.default - couldn't find symbolic meta function/decomposition
xfail('linalg.matrix_power'), # RuntimeError: Trying to call aten.size on a tensor with symbolic shape
xfail('linalg.matrix_norm', ''), # aten.linalg_vector_norm.default - couldn't find symbolic meta function/decomposition
xfail('linalg.matrix_rank', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.matrix_rank', 'hermitian'), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.multi_dot', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.norm', ''), # TensorImpl do not have numel
xfail('linalg.norm', 'subgradients_at_zero'), # TensorImpl do not have numel
xfail('linalg.pinv', ''), # aten.linalg_pinv.atol_rtol_tensor - couldn't find symbolic meta function/decomposition
xfail('linalg.pinv', 'singular'), # aten.linalg_cholesky_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.pinv', 'hermitian'), # aten.linalg_pinv.atol_rtol_tensor - couldn't find symbolic meta function/decompo...
xfail('linalg.qr', ''), # aten.linalg_qr.default - couldn't find symbolic meta function/decomposition
xfail('linalg.slogdet', ''), # aten._linalg_slogdet.default - couldn't find symbolic meta function/decomposition
xfail('linalg.solve', ''), # aten._linalg_solve_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.solve_ex', ''), # aten._linalg_solve_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.solve_triangular', ''), # aten.linalg_solve_triangular.default - couldn't find symbolic meta function/de...
xfail('linalg.svd', ''), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
xfail('linalg.svdvals', ''), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
xfail('linalg.tensorinv', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.tensorsolve', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.vander', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.vecdot', ''), # Could not run 'aten::vdot' with arguments from the 'Meta' backend. This could be ...
xfail('linalg.vector_norm', ''), # TensorImpl do not have numel
xfail('logaddexp2', ''), # aten.logaddexp2.default - couldn't find symbolic meta function/decomposition
xfail('logaddexp', ''), # aten.logaddexp.default - couldn't find symbolic meta function/decomposition
xfail('logcumsumexp', ''), # aten.logcumsumexp.default - couldn't find symbolic meta function/decomposition
xfail('logdet', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('long', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('lu', ''), # aten.linalg_lu_factor_ex.default - couldn't find symbolic meta function/decomposition
xfail('lu_solve', ''), # aten.linalg_lu_solve.default - couldn't find symbolic meta function/decomposition
xfail('lu_unpack', ''), # aten.lu_unpack.default - couldn't find symbolic meta function/decomposition
xfail('masked_fill', ''), # expected predicate to be bool, got torch.float32
xfail('masked_scatter', ''), # aten.masked_scatter.default - couldn't find symbolic meta function/decomposition
xfail('masked_select', ''), # aten.masked_select.default - couldn't find symbolic meta function/decomposition
xfail('matmul', ''), # aten.new_empty.default - couldn't find symbolic meta function/decomposition
xfail('matrix_exp', ''), # aten.linalg_matrix_exp.default - couldn't find symbolic meta function/decomposition
xfail('max', 'reduction_with_dim'), # aten.max.dim - couldn't find symbolic meta function/decomposition
xfail('mean', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
xfail('median', ''), # Could not run 'aten::median' with arguments from the 'Meta' backend. This could be becau...
xfail('meshgrid', 'list_of_tensors'), # Tensors of type TensorImpl do not have numel
xfail('meshgrid', 'variadic_tensors'), # Tensors of type TensorImpl do not have numel
xfail('min', 'reduction_with_dim'), # aten.min.dim - couldn't find symbolic meta function/decomposition
xfail('mm', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
xfail('mode', ''), # aten.mode.default - couldn't find symbolic meta function/decomposition
xfail('msort', ''), # aten.sort.default - couldn't find symbolic meta function/decomposition
xfail('mv', ''), # aten.mv.default - couldn't find symbolic meta function/decomposition
xfail('nanmean', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('nanquantile', ''), # Could not run 'aten::equal' with arguments from the 'Meta' backend.
xfail('narrow', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('native_layer_norm', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promot...
xfail('nn.functional.adaptive_avg_pool1d', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.adaptive_avg_pool2d', ''), # argument 'size' must be tuple of ints, but found element o...
xfail('nn.functional.adaptive_avg_pool3d', ''), # aten._adaptive_avg_pool3d.default - couldn't find symbolic meta func...
xfail('nn.functional.adaptive_max_pool1d', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.adaptive_max_pool2d', ''), # aten.adaptive_max_pool2d.default - couldn't find symbolic meta funct...
xfail('nn.functional.adaptive_max_pool3d', ''), # argument 'output_size' (position 2) must be tupl...
xfail('nn.functional.avg_pool1d', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.avg_pool2d', ''), # aten.avg_pool2d.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.avg_pool3d', ''), # aten.avg_pool3d.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.batch_norm', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.bilinear', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.binary_cross_entropy', ''), # aten.new_empty.default - couldn't find symbolic meta function/decom...
xfail('nn.functional.binary_cross_entropy_with_logits', ''), # aten.binary_cross_entropy_with_logits.default - couldn'...
xfail('nn.functional.conv1d', ''), # aten.convolution.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.conv2d', ''), # aten.convolution.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.conv_transpose1d', ''), # aten.convolution.default - couldn't find symbolic meta function/decompo...
xfail('nn.functional.conv_transpose2d', ''), # aten.convolution.default - couldn't find symbolic meta function/decompo...
xfail('nn.functional.conv_transpose3d', ''), # aten.convolution.default - couldn't find symbolic meta function/decompo...
xfail('nn.functional.cosine_embedding_loss', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('nn.functional.cosine_similarity', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.cross_entropy', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.dropout2d', ''), # Tensors of type TensorImpl do not have numel
xfail('nn.functional.dropout3d', ''), # Tensors of type TensorImpl do not have numel
xfail('nn.functional.dropout', ''), # Tensors of type TensorImpl do not have numel
xfail('nn.functional.embedding_bag', ''), # aten._embedding_bag_forward_only.default - couldn't find symbolic meta fun...
xfail('nn.functional.embedding', ''), # argument 'size' must be tuple of ints, but found element of type tor...
xfail('nn.functional.feature_alpha_dropout', 'with_train'), # Tensors of type TensorImpl do not have numel
xfail('nn.functional.fractional_max_pool2d', ''), # argument 'size' must be tuple of ints, but found element of t...
xfail('nn.functional.fractional_max_pool3d', ''), # argument 'size' must be tuple of ints, but found element of t...
xfail('nn.functional.glu', ''), # aten.glu.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.grid_sample', ''), # aten.grid_sampler_2d.default - couldn't find symbolic meta function/decompos...
xfail('nn.functional.group_norm', ''), # 'torch._C.SymIntNode' and 'int'
xfail('nn.functional.hinge_embedding_loss', ''), # aten.empty_like.default - couldn't find symbolic meta function/deco...
xfail('nn.functional.huber_loss', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.instance_norm', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.interpolate', 'area'), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.interpolate', 'bicubic'), # aten.upsample_bicubic2d.vec - couldn't find symbolic meta function/d...
xfail('nn.functional.interpolate', 'bilinear'), # aten.upsample_bilinear2d.vec - couldn't find symbolic meta function...
xfail('nn.functional.interpolate', 'linear'), # aten.upsample_linear1d.vec - couldn't find symbolic meta function/dec...
xfail('nn.functional.interpolate', 'nearest'), # aten.upsample_nearest1d.vec - couldn't find symbolic meta function/d...
xfail('nn.functional.interpolate', 'trilinear'), # aten.upsample_trilinear3d.vec - couldn't find symbolic meta functi...
xfail('nn.functional.kl_div', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type pro...
xfail('nn.functional.l1_loss', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.layer_norm', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type...
xfail('nn.functional.linear', ''), # aten.mv.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.local_response_norm', ''), # Tensors of type TensorImpl do not have numel
xfail('nn.functional.margin_ranking_loss', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('nn.functional.max_pool2d', ''), # aten.max_pool2d_with_indices.default - couldn't find symbolic meta function/d...
xfail('nn.functional.max_pool3d', ''), # aten.max_pool3d_with_indices.default - couldn't find symbolic meta function/d...
xfail('nn.functional.max_unpool1d', 'grad'), # aten.max_unpool2d.default - couldn't find symbolic meta function/decom...
xfail('nn.functional.max_unpool2d', 'grad'), # aten.max_unpool2d.default - couldn't find symbolic meta function/decom...
xfail('nn.functional.max_unpool3d', 'grad'), # aten.max_unpool3d.default - couldn't find symbolic meta function/decom...
xfail('nn.functional.mse_loss', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.multi_margin_loss', ''), # Could not run 'aten::multi_margin_loss' with arguments from the...
xfail('nn.functional.multilabel_margin_loss', ''), # Could not run 'aten::multilabel_margin_loss_forward' with ...
xfail('nn.functional.multilabel_soft_margin_loss', ''), # aten.new_empty.default - couldn't find symbolic meta functio...
xfail('nn.functional.normalize', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.pad', 'circular'), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.pad', 'constant'), # aten.fill.Scalar - couldn't find symbolic meta function/decomposition
xfail('nn.functional.pad', 'reflect'), # aten.reflection_pad1d.default - couldn't find symbolic meta function/decompo...
xfail('nn.functional.pad', 'replicate'), # aten.replication_pad1d.default - couldn't find symbolic meta function/deco...
xfail('nn.functional.pdist', ''), # Could not run 'aten::_pdist_forward' with arguments from the 'Meta' backend...
xfail('nn.functional.pixel_shuffle', ''), # aten.pixel_shuffle.default - couldn't find symbolic meta function/decompos...
xfail('nn.functional.pixel_unshuffle', ''), # aten.pixel_unshuffle.default - couldn't find symbolic meta function/deco...
xfail('nn.functional.poisson_nll_loss', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('nn.functional.rrelu', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.smooth_l1_loss', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.soft_margin_loss', ''), # aten.soft_margin_loss.default - couldn't find symbolic meta function/de...
xfail('nn.functional.triplet_margin_loss', ''), # Unexpected type <class 'torch.SymIntNode'> when computing element...
xfail('nn.functional.triplet_margin_with_distance_loss', ''), # Unexpected type <class 'torch.SymIntNode'> when com...
xfail('nn.functional.unfold', ''), # aten.im2col.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.upsample_bilinear', ''), # aten.upsample_bilinear2d.vec - couldn't find symbolic meta function/de...
xfail('nn.functional.upsample_nearest', ''), # aten.upsample_nearest1d.vec - couldn't find symbolic meta function/deco...
xfail('norm', ''), # TensorImpl does not have numel
xfail('norm', 'nuc'), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
xfail('normal', ''), # aten.normal.Tensor_Tensor - couldn't find symbolic meta function/decomposition
xfail('normal', 'number_mean'), # aten.normal.float_Tensor - couldn't find symbolic meta function/decomposition
xfail('ones_like', ''), # aten.ones_like.default - couldn't find symbolic meta function/decomposition
xfail('ormqr', ''), # aten.ormqr.default - couldn't find symbolic meta function/decomposition
xfail('outer', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('pca_lowrank', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
xfail('pinverse', ''), # aten.linalg_pinv.atol_rtol_tensor - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_0'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_1'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_2'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_3'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_4'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('put', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
xfail('quantile', ''), # Could not run 'aten::equal' with arguments from the 'Meta' backend.
xfail('qr', ''), # aten.linalg_qr.default - couldn't find symbolic meta function/decomposition
xfail('rad2deg', ''), # aten.rad2deg.default - couldn't find symbolic meta function/decomposition
xfail('rand_like', ''), # aten.randn_like.default - couldn't find symbolic meta function/decomposition
xfail('randint_like', ''), # aten.randint_like.default - couldn't find symbolic meta function/decomposition
xfail('randn_like', ''), # aten.randn_like.default - couldn't find symbolic meta function/decomposition
xfail('ravel', ''), # Tensors of type TensorImpl do not have numel
xfail('renorm', ''), # aten.renorm.default - couldn't find symbolic meta function/decomposition
xfail('repeat', ''), # aten.repeat.default - couldn't find symbolic meta function/decomposition
xfail('reshape_as', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('reshape', ''), # Tensors of type TensorImpl do not have numel
xfail('resize_', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
xfail('resize_as_', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
xfail('roll', ''), # Tensors of type TensorImpl do not have numel
xfail('rot90', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
xfail('round', ''), # aten.round.default - couldn't find symbolic meta function/decomposition
xfail('round', 'decimals_0'), # aten.round.decimals - couldn't find symbolic meta function/decomposition
xfail('round', 'decimals_3'), # aten.round.decimals - couldn't find symbolic meta function/decomposition
xfail('round', 'decimals_neg_3'), # aten.round.decimals - couldn't find symbolic meta function/decomposition
xfail('scatter_add', ''), # aten.scatter_add.default - couldn't find symbolic meta function/decomposition
xfail('scatter', ''), # aten.scatter.src - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'amax'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'amin'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'mean'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'prod'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'sum'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('searchsorted', ''), # Could not run 'aten::searchsorted.Tensor' with arguments from the 'Meta' backend. ...
xfail('segment_reduce', 'offsets'), # aten.segment_reduce.default - couldn't find symbolic meta function/decomposition
xfail('select', ''), # aten.select.int - couldn't find symbolic meta function/decomposition
xfail('select_scatter', ''), # aten.select_scatter.default - couldn't find symbolic meta function/decomposition
xfail('sgn', ''), # aten.sgn.default - couldn't find symbolic meta function/decomposition
xfail('short', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('sinc', ''), # aten.sinc.default - couldn't find symbolic meta function/decomposition
xfail('slice_scatter', ''), # aten.slice_scatter.default - couldn't find symbolic meta function/decomposition
xfail('sort', ''), # aten.sort.default - couldn't find symbolic meta function/decomposition
xfail('special.airy_ai', ''), # aten.special_airy_ai.default - couldn't find symbolic meta function/decomposition
xfail('special.bessel_j0', ''), # aten.special_bessel_j0.default - couldn't find symbolic meta function/decomposition
xfail('special.bessel_j1', ''), # aten.special_bessel_j1.default - couldn't find symbolic meta function/decomposition
xfail('special.bessel_y0', ''), # aten.special_bessel_y0.default - couldn't find symbolic meta function/decomposition
xfail('special.bessel_y1', ''), # aten.special_bessel_y1.default - couldn't find symbolic meta function/decomposition
xfail('special.chebyshev_polynomial_t', ''), # aten.special_chebyshev_polynomial_t.default - couldn't find symbolic me...
xfail('special.chebyshev_polynomial_u', ''), # aten.special_chebyshev_polynomial_u.default - couldn't find symbolic me...
xfail('special.entr', ''), # aten.special_entr.default - couldn't find symbolic meta function/decomposition
xfail('special.erfcx', ''), # aten.special_erfcx.default - couldn't find symbolic meta function/decomposition
xfail('special.hermite_polynomial_h', ''), # aten.special_hermite_polynomial_h.default - couldn't find symbolic meta f...
xfail('special.hermite_polynomial_he', ''), # aten.special_hermite_polynomial_he.default - couldn't find symbolic meta...
xfail('special.laguerre_polynomial_l', ''), # aten.special_laguerre_polynomial_l.default - couldn't find symbolic meta...
xfail('special.log_ndtr', ''), # aten.special_log_ndtr.default - couldn't find symbolic meta function/decomposition
xfail('special.modified_bessel_i0', ''), # aten.special_modified_bessel_i0.default - couldn't find symbolic meta funct...
xfail('special.modified_bessel_i1', ''), # aten.special_modified_bessel_i1.default - couldn't find symbolic meta funct...
xfail('special.modified_bessel_k0', ''), # aten.special_modified_bessel_k0.default - couldn't find symbolic meta funct...
xfail('special.modified_bessel_k1', ''), # aten.special_modified_bessel_k1.default - couldn't find symbolic meta funct...
xfail('special.ndtri', ''), # aten.special_ndtri.default - couldn't find symbolic meta function/decomposition
xfail('special.polygamma', 'special_polygamma_n_0'), # aten.polygamma.default - couldn't find symbolic meta function/...
xfail('special.scaled_modified_bessel_k0', ''), # aten.special_scaled_modified_bessel_k0.default - couldn't find symbo...
xfail('special.scaled_modified_bessel_k1', ''), # aten.special_scaled_modified_bessel_k1.default - couldn't find symbo...
xfail('special.spherical_bessel_j0', ''), # aten.special_spherical_bessel_j0.default - couldn't find symbolic meta fun...
xfail('special.xlog1py', ''), # aten.special_xlog1py.default - couldn't find symbolic meta function/decomposition
xfail('split', ''), # 'torch._C.SymIntNode' and 'int'
xfail('split', 'list_args'), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('split_with_sizes', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('std', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
xfail('std_mean', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
xfail('stft', ''), # argument 'size' must be tuple of ints, but found element of type torch._C.SymIntNode at...
xfail('sum_to_size', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('svd', ''), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
xfail('svd_lowrank', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
xfail('symeig', ''), # aten.symeig.default - couldn't find symbolic meta function/decomposition
xfail('take_along_dim', ''), # dtype of indices should be Long but got Float
xfail('take', ''), # aten.take.default - couldn't find symbolic meta function/decomposition
xfail('tensordot', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('tile', ''), # aten.repeat.default - couldn't find symbolic meta function/decomposition
xfail('topk', ''), # aten.topk.default - couldn't find symbolic meta function/decomposition
xfail('trapz', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('trapezoid', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('triangular_solve', ''), # aten.triangular_solve.default - couldn't find symbolic meta function/decomposition
xfail('tril', ''), # aten.tril.default - couldn't find symbolic meta function/decomposition
xfail('triu', ''), # aten.triu.default - couldn't find symbolic meta function/decomposition
xfail('unfold', ''), # aten.unfold.default - couldn't find symbolic meta function/decomposition
xfail('var_mean', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
xfail('var', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
xfail('vdot', ''), # aten.vdot.default - couldn't find symbolic meta function/decomposition
xfail('view_as_complex', ''), # aten.view_as_complex.default - couldn't find symbolic meta function/decomposition
xfail('view_as', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('view', ''), # Tensors of type TensorImpl do not have numel
xfail('vsplit', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('where', ''), # expected predicate to be bool, got torch.float32
xfail('zero_', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
xfail('zeros_like', ''), # aten.zeros_like.default - couldn't find symbolic meta function/decomposition
xfail('unbind', ''), # aten.unbind.int - couldn't find symbolic meta function/decomposition
}
symbolic_tensor_segfaults = {
skip('_masked.logsumexp', ''), # Tensors of type TensorImpl do not have numel
}
symbolic_tensor_failures.update(symbolic_tensor_segfaults)
def _test_make_fx_helper(self, device, dtype, op, tracing_mode):
def f(args, kwargs):
return op.op(*args, **kwargs)
sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False)
new_f = None
for sample_input in sample_inputs_itr:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
try:
new_f = make_fx(f, tracing_mode=tracing_mode)(args, kwargs)
except DynamicOutputShapeException as e:
self.skipTest("Dynamic output shape operation in trace")
for arg in args:
if isinstance(arg, torch.Tensor) and arg.dtype == torch.float:
arg.uniform_(0, 1)
try:
old_out = f(args, kwargs)
except Exception:
continue
new_out = wrapper_set_seed(new_f, args, kwargs)
self.assertEqual(new_out, old_out)
class TestProxyTensorOpInfo(TestCase):
@ops(op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_exhaustive', make_fx_failures)
def test_make_fx_exhaustive(self, device, dtype, op):
_test_make_fx_helper(self, device, dtype, op, "real")
@ops(op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_fake_exhaustive', make_fx_failures.union(fake_tensor_failures))
def test_make_fx_fake_exhaustive(self, device, dtype, op):
_test_make_fx_helper(self, device, dtype, op, "fake")
@skipIfNoSympy
@ops(op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive',
make_fx_failures | fake_tensor_failures | symbolic_tensor_failures)
def test_make_fx_symbolic_exhaustive(self, device, dtype, op):
_test_make_fx_helper(self, device, dtype, op, "symbolic")
only_for = ("cpu")
instantiate_device_type_tests(TestProxyTensorOpInfo, globals(), only_for=only_for)
if __name__ == '__main__':
run_tests()