mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Enables clang-tidy rule [`misc-use-internal-linkage`](https://clang.llvm.org/extra/clang-tidy/checks/misc/use-internal-linkage.html). This new check was introduced in Clang-Tidy 18 and is available due to recent update of Clang-Tidy 19. The check marks functions and variables used only in the translation unit as static. Therefore undesired symbols are not leaked into other units, more link time optimisations are possible and the resulting binaries may be smaller. The detected violations were mostly fixed by using static. In other cases, the symbols were indeed consumed by others files, then their declaring headers were included. Still some declarations were wrong and have been fixed. Pull Request resolved: https://github.com/pytorch/pytorch/pull/148948 Approved by: https://github.com/Skylion007
505 lines
17 KiB
C++
505 lines
17 KiB
C++
#include <ATen/ATen.h>
|
|
#include <ATen/xpu/XPUContext.h>
|
|
#include <ATen/xpu/XPUGeneratorImpl.h>
|
|
#include <c10/xpu/XPUCachingAllocator.h>
|
|
#include <c10/xpu/XPUFunctions.h>
|
|
#include <torch/csrc/Module.h>
|
|
#include <torch/csrc/THP.h>
|
|
#include <torch/csrc/utils/device_lazy_init.h>
|
|
#include <torch/csrc/utils/pycfunction_helpers.h>
|
|
#include <torch/csrc/utils/python_numbers.h>
|
|
#include <torch/csrc/utils/python_strings.h>
|
|
#include <torch/csrc/xpu/Module.h>
|
|
|
|
#ifndef WIN32
|
|
#include <pthread.h>
|
|
#endif
|
|
|
|
using namespace torch;
|
|
|
|
static bool in_bad_fork = false; // True for children forked after xpu init
|
|
|
|
#ifndef WIN32
|
|
// Called in the forked child if xpu has already been initialized
|
|
static void forked_child() {
|
|
in_bad_fork = true;
|
|
torch::utils::set_requires_device_init(at::kXPU, true);
|
|
}
|
|
#endif
|
|
|
|
// Should be called before the first xpu call. It is mainly called in lazy_init.
|
|
// Note: This is distinct from initExtension because a stub xpu implementation
|
|
// has some working functions (e.g. device_count) but cannot fully initialize.
|
|
static void poison_fork() {
|
|
#ifndef WIN32
|
|
static auto result [[maybe_unused]] =
|
|
pthread_atfork(nullptr, nullptr, forked_child);
|
|
#endif
|
|
}
|
|
|
|
// XPU management methods
|
|
|
|
static PyObject* THXPModule_getArchFlags(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
#ifdef XPU_ARCH_FLAGS
|
|
static const char* flags = C10_STRINGIZE(XPU_ARCH_FLAGS);
|
|
return THPUtils_packString(flags);
|
|
#else
|
|
Py_RETURN_NONE;
|
|
#endif
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THXPModule_isInBadFork_wrap(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
return PyBool_FromLong(in_bad_fork);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THXPModule_setDevice_wrap(PyObject* self, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to set_device");
|
|
|
|
auto device_index = THPUtils_unpackDeviceIndex(arg);
|
|
c10::xpu::set_device(device_index);
|
|
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THXPModule_exchangeDevice_wrap(PyObject* self, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to exchange_device");
|
|
|
|
auto device_index = THPUtils_unpackDeviceIndex(arg);
|
|
if (device_index < 0) {
|
|
return THPUtils_packInt32(-1);
|
|
}
|
|
|
|
torch::utils::device_lazy_init(at::kXPU);
|
|
auto current_device = c10::xpu::exchange_device(device_index);
|
|
|
|
return THPUtils_packDeviceIndex(current_device);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THXPModule_maybeExchangeDevice_wrap(
|
|
PyObject* self,
|
|
PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(
|
|
THPUtils_checkLong(arg), "invalid argument to maybe_exchange_device");
|
|
|
|
auto device_index = THPUtils_unpackDeviceIndex(arg);
|
|
if (device_index < 0) {
|
|
return THPUtils_packInt32(-1);
|
|
}
|
|
|
|
torch::utils::device_lazy_init(at::kXPU);
|
|
auto current_device = c10::xpu::maybe_exchange_device(device_index);
|
|
|
|
return THPUtils_packDeviceIndex(current_device);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THXPModule_getDevice_wrap(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
|
|
auto device_index = c10::xpu::current_device();
|
|
|
|
return THPUtils_packDeviceIndex(device_index);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THXPModule_getDeviceCount_wrap(
|
|
PyObject* self,
|
|
PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
poison_fork();
|
|
return THPUtils_packUInt64(at::xpu::device_count());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THXPModule_getCurrentStream_wrap(
|
|
PyObject* self,
|
|
PyObject* device_index) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(
|
|
THPUtils_checkLong(device_index), "invalid argument to current_stream");
|
|
auto c10_device_index = THPUtils_unpackDeviceIndex(device_index);
|
|
auto stream = at::xpu::getCurrentXPUStream(c10_device_index);
|
|
PyObject* output_tuple = PyTuple_New(3);
|
|
PyTuple_SetItem(
|
|
output_tuple, 0, THPUtils_packInt64(static_cast<int64_t>(stream.id())));
|
|
PyTuple_SetItem(
|
|
output_tuple, 1, THPUtils_packDeviceIndex(stream.device_index()));
|
|
PyTuple_SetItem(
|
|
output_tuple,
|
|
2,
|
|
THPUtils_packInt64(static_cast<int64_t>(stream.device_type())));
|
|
return output_tuple;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THXPModule_getCurrentStream_raw(
|
|
PyObject* self,
|
|
PyObject* device_index) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(
|
|
THPUtils_checkLong(device_index),
|
|
"invalid argument to getCurrentRawStream");
|
|
auto c10_device_index = THPUtils_unpackDeviceIndex(device_index);
|
|
return PyLong_FromVoidPtr(
|
|
&at::xpu::getCurrentXPUStream(c10_device_index).queue());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THXPModule_setStream_wrap(
|
|
PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwargs) {
|
|
HANDLE_TH_ERRORS
|
|
int64_t stream_id = 0;
|
|
int64_t device_index = 0;
|
|
int64_t device_type = 0;
|
|
|
|
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
|
|
constexpr const char* kwlist[] = {
|
|
"stream_id", "device_index", "device_type", nullptr};
|
|
if (!PyArg_ParseTupleAndKeywords(
|
|
args,
|
|
kwargs,
|
|
"|LLL",
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
|
|
const_cast<char**>(kwlist),
|
|
&stream_id,
|
|
&device_index,
|
|
&device_type)) {
|
|
}
|
|
|
|
auto stream = at::xpu::XPUStream::unpack3(
|
|
stream_id,
|
|
static_cast<c10::DeviceIndex>(device_index),
|
|
static_cast<c10::DeviceType>(device_type));
|
|
|
|
auto device = c10::xpu::current_device();
|
|
if (device != stream.device_index()) {
|
|
c10::xpu::set_device(stream.device_index());
|
|
}
|
|
at::xpu::setCurrentXPUStream(stream);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THXPModule_xpuSynchronize(PyObject* self, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to synchronize");
|
|
auto device_index = THPUtils_unpackDeviceIndex(arg);
|
|
{
|
|
pybind11::gil_scoped_release no_gil;
|
|
// Only the SYCL queues we have reserved will be synchronized, see Note
|
|
// [Synchronize Streams on Device].
|
|
c10::xpu::syncStreamsOnDevice(device_index);
|
|
}
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THXPModule_emptyCache(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
c10::xpu::XPUCachingAllocator::emptyCache();
|
|
END_HANDLE_TH_ERRORS
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
static PyObject* THXPModule_memoryStats(PyObject* self, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to memory_stats");
|
|
const auto device_index = THPUtils_unpackDeviceIndex(arg);
|
|
|
|
using c10::CachingAllocator::Stat;
|
|
using c10::CachingAllocator::StatArray;
|
|
using c10::CachingAllocator::StatType;
|
|
using c10::CachingDeviceAllocator::DeviceStats;
|
|
|
|
const auto statToDict = [](const Stat& stat) {
|
|
py::dict dict;
|
|
|
|
dict["current"] = stat.current;
|
|
dict["peak"] = stat.peak;
|
|
dict["allocated"] = stat.allocated;
|
|
dict["freed"] = stat.freed;
|
|
return dict;
|
|
};
|
|
|
|
const auto statArrayToDict = [=](const StatArray& statArray) {
|
|
const std::array<const char*, static_cast<size_t>(StatType::NUM_TYPES)>
|
|
statTypeNames = {"all", "small_pool", "large_pool"};
|
|
py::dict dict;
|
|
for (const auto i : c10::irange(statTypeNames.size())) {
|
|
dict[statTypeNames[i]] = statToDict(statArray[i]);
|
|
}
|
|
return dict;
|
|
};
|
|
|
|
const DeviceStats stats =
|
|
c10::xpu::XPUCachingAllocator::getDeviceStats(device_index);
|
|
|
|
py::dict result;
|
|
result["allocated_bytes"] = statArrayToDict(stats.allocated_bytes);
|
|
result["reserved_bytes"] = statArrayToDict(stats.reserved_bytes);
|
|
result["active_bytes"] = statArrayToDict(stats.active_bytes);
|
|
result["requested_bytes"] = statArrayToDict(stats.requested_bytes);
|
|
|
|
return result.release().ptr();
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THXPModule_resetPeakMemoryStats(
|
|
PyObject* self,
|
|
PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(
|
|
THPUtils_checkLong(arg), "invalid argument to reset_peak_memory_stats");
|
|
const auto device_index = THPUtils_unpackDeviceIndex(arg);
|
|
c10::xpu::XPUCachingAllocator::resetPeakStats(device_index);
|
|
END_HANDLE_TH_ERRORS
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
static PyObject* THXPModule_resetAccumulatedMemoryStats(
|
|
PyObject* self,
|
|
PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(
|
|
THPUtils_checkLong(arg),
|
|
"invalid argument to reset_accumulated_memory_stats");
|
|
const auto device_index = THPUtils_unpackDeviceIndex(arg);
|
|
c10::xpu::XPUCachingAllocator::resetAccumulatedStats(device_index);
|
|
END_HANDLE_TH_ERRORS
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
// XPU module initialization
|
|
|
|
static void registerXpuDeviceProperties(PyObject* module) {
|
|
// Add _xpuDevicePropertires class to torch._C
|
|
using namespace c10::xpu;
|
|
auto get_device_type = [](const DeviceProp& prop) {
|
|
std::ostringstream stream;
|
|
using namespace sycl::info;
|
|
switch (prop.device_type) {
|
|
case device_type::cpu:
|
|
stream << "cpu";
|
|
break;
|
|
case device_type::gpu:
|
|
stream << "gpu";
|
|
break;
|
|
case device_type::accelerator:
|
|
stream << "accelerator";
|
|
break;
|
|
case device_type::host:
|
|
stream << "host";
|
|
break;
|
|
default:
|
|
stream << "unknown device type:"
|
|
<< static_cast<typename std::underlying_type_t<device_type>>(
|
|
prop.device_type);
|
|
break;
|
|
}
|
|
return stream.str();
|
|
};
|
|
auto gpu_subslice_count = [](const DeviceProp& prop) {
|
|
return (prop.gpu_eu_count / prop.gpu_eu_count_per_subslice);
|
|
};
|
|
#if SYCL_COMPILER_VERSION >= 20250000
|
|
auto get_device_architecture = [](const DeviceProp& prop) {
|
|
return static_cast<int64_t>(prop.architecture);
|
|
};
|
|
#endif
|
|
auto m = py::handle(module).cast<py::module>();
|
|
|
|
#define DEFINE_READONLY_MEMBER(member) \
|
|
def_readonly(#member, &DeviceProp::member)
|
|
|
|
#define THXP_FORALL_DEVICE_PROPERTIES(_) \
|
|
py::class_<DeviceProp>(m, "_XpuDeviceProperties") \
|
|
._(name) \
|
|
._(platform_name) \
|
|
._(vendor) \
|
|
._(driver_version) \
|
|
._(version) \
|
|
._(max_compute_units) \
|
|
._(gpu_eu_count) \
|
|
._(max_work_group_size) \
|
|
._(max_num_sub_groups) \
|
|
._(sub_group_sizes) \
|
|
._(has_fp16) \
|
|
._(has_fp64) \
|
|
._(has_atomic64) \
|
|
._(has_bfloat16_conversions) \
|
|
._(has_subgroup_matrix_multiply_accumulate) \
|
|
._(has_subgroup_matrix_multiply_accumulate_tensor_float32) \
|
|
._(has_subgroup_2d_block_io)
|
|
|
|
THXP_FORALL_DEVICE_PROPERTIES(DEFINE_READONLY_MEMBER)
|
|
.def_readonly("total_memory", &DeviceProp::global_mem_size)
|
|
.def_property_readonly("gpu_subslice_count", gpu_subslice_count)
|
|
#if SYCL_COMPILER_VERSION >= 20250000
|
|
.def_property_readonly("architecture", get_device_architecture)
|
|
#endif
|
|
.def_property_readonly("type", get_device_type)
|
|
.def(
|
|
"__repr__",
|
|
[&get_device_type, &gpu_subslice_count](const DeviceProp& prop) {
|
|
std::ostringstream stream;
|
|
stream << "_XpuDeviceProperties(name='" << prop.name
|
|
<< "', platform_name='" << prop.platform_name << "', type='"
|
|
<< get_device_type(prop) << "', driver_version='"
|
|
<< prop.driver_version << "', total_memory="
|
|
<< prop.global_mem_size / (1024ull * 1024) << "MB"
|
|
<< ", max_compute_units=" << prop.max_compute_units
|
|
<< ", gpu_eu_count=" << prop.gpu_eu_count
|
|
<< ", gpu_subslice_count=" << gpu_subslice_count(prop)
|
|
<< ", max_work_group_size=" << prop.max_work_group_size
|
|
<< ", max_num_sub_groups=" << prop.max_num_sub_groups
|
|
<< ", sub_group_sizes=[" << prop.sub_group_sizes
|
|
<< "], has_fp16=" << prop.has_fp16
|
|
<< ", has_fp64=" << prop.has_fp64
|
|
<< ", has_atomic64=" << prop.has_atomic64 << ")";
|
|
return stream.str();
|
|
});
|
|
}
|
|
|
|
static void bindGetDeviceProperties(PyObject* module) {
|
|
// Add method to torch.xpu
|
|
auto m = py::handle(module).cast<py::module>();
|
|
m.def(
|
|
"_get_device_properties",
|
|
[](c10::DeviceIndex device) -> c10::xpu::DeviceProp* {
|
|
return at::xpu::getDeviceProperties(device);
|
|
},
|
|
py::return_value_policy::reference);
|
|
}
|
|
|
|
static void initXpuMethodBindings(PyObject* module) {
|
|
auto m = py::handle(module).cast<py::module>();
|
|
m.def("_xpu_getMemoryInfo", [](c10::DeviceIndex device_index) {
|
|
#if SYCL_COMPILER_VERSION >= 20250000
|
|
auto total = at::xpu::getDeviceProperties(device_index)->global_mem_size;
|
|
auto& device = c10::xpu::get_raw_device(device_index);
|
|
TORCH_CHECK(
|
|
device.has(sycl::aspect::ext_intel_free_memory),
|
|
"The device (",
|
|
at::xpu::getDeviceProperties(device_index)->name,
|
|
") doesn't support querying the available free memory. ",
|
|
"You can file an issue at https://github.com/pytorch/pytorch/issues ",
|
|
"to help us prioritize its implementation.");
|
|
auto free = device.get_info<sycl::ext::intel::info::device::free_memory>();
|
|
return std::make_tuple(free, total);
|
|
#else
|
|
TORCH_CHECK_NOT_IMPLEMENTED(
|
|
false,
|
|
"torch.xpu.mem_get_info requires PyTorch to be built with SYCL compiler version 2025.0.0 or newer.");
|
|
#endif
|
|
});
|
|
m.def(
|
|
"_xpu_getStreamFromExternal",
|
|
[](uintptr_t data_ptr, c10::DeviceIndex device_index) {
|
|
sycl::queue* ext_queue =
|
|
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
|
reinterpret_cast<sycl::queue*>(reinterpret_cast<void*>(data_ptr));
|
|
at::xpu::XPUStream stream =
|
|
c10::xpu::getStreamFromExternal(ext_queue, device_index);
|
|
return std::make_tuple(
|
|
stream.id(), stream.device_index(), stream.device_type());
|
|
});
|
|
}
|
|
|
|
// Callback for python part. Used for additional initialization of python
|
|
// classes
|
|
static PyObject* THXPModule_initExtension(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_INTERNAL_ASSERT(!in_bad_fork); // Handled at python level
|
|
poison_fork();
|
|
at::globalContext().lazyInitDevice(c10::DeviceType::XPU);
|
|
|
|
auto m = THPObjectPtr(PyImport_ImportModule("torch.xpu"));
|
|
if (!m)
|
|
throw python_error();
|
|
|
|
auto set_module_attr = [&](const char* name, PyObject* v) {
|
|
if (PyObject_SetAttrString(m, name, v) < 0) {
|
|
throw python_error();
|
|
}
|
|
};
|
|
|
|
auto num_gpus = c10::xpu::device_count();
|
|
THPObjectPtr default_xpu_generators(
|
|
PyTuple_New(static_cast<Py_ssize_t>(num_gpus)));
|
|
for (const auto i : c10::irange(num_gpus)) {
|
|
const auto& gen = at::xpu::detail::getDefaultXPUGenerator(i);
|
|
auto* cast_gen = THPGenerator_initDefaultGenerator(gen);
|
|
PyTuple_SetItem(default_xpu_generators.get(), i, cast_gen);
|
|
}
|
|
set_module_attr("default_generators", default_xpu_generators.get());
|
|
bindGetDeviceProperties(m);
|
|
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// NOLINTNEXTLINE(*-c-arrays*, *-global-variables)
|
|
static struct PyMethodDef _THXPModule_methods[] = {
|
|
{"_xpu_init", THXPModule_initExtension, METH_NOARGS, nullptr},
|
|
{"_xpu_setDevice", THXPModule_setDevice_wrap, METH_O, nullptr},
|
|
{"_xpu_exchangeDevice", THXPModule_exchangeDevice_wrap, METH_O, nullptr},
|
|
{"_xpu_maybeExchangeDevice",
|
|
THXPModule_maybeExchangeDevice_wrap,
|
|
METH_O,
|
|
nullptr},
|
|
{"_xpu_getDevice", THXPModule_getDevice_wrap, METH_NOARGS, nullptr},
|
|
{"_xpu_getDeviceCount",
|
|
THXPModule_getDeviceCount_wrap,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_xpu_getArchFlags", THXPModule_getArchFlags, METH_NOARGS, nullptr},
|
|
{"_xpu_isInBadFork", THXPModule_isInBadFork_wrap, METH_NOARGS, nullptr},
|
|
{"_xpu_getCurrentStream",
|
|
THXPModule_getCurrentStream_wrap,
|
|
METH_O,
|
|
nullptr},
|
|
{"_xpu_getCurrentRawStream",
|
|
THXPModule_getCurrentStream_raw,
|
|
METH_O,
|
|
nullptr},
|
|
{"_xpu_setStream",
|
|
castPyCFunctionWithKeywords(THXPModule_setStream_wrap),
|
|
METH_VARARGS | METH_KEYWORDS,
|
|
nullptr},
|
|
{"_xpu_synchronize", THXPModule_xpuSynchronize, METH_O, nullptr},
|
|
{"_xpu_emptyCache", THXPModule_emptyCache, METH_NOARGS, nullptr},
|
|
{"_xpu_memoryStats", THXPModule_memoryStats, METH_O, nullptr},
|
|
{"_xpu_resetAccumulatedMemoryStats",
|
|
THXPModule_resetAccumulatedMemoryStats,
|
|
METH_O,
|
|
nullptr},
|
|
{"_xpu_resetPeakMemoryStats",
|
|
THXPModule_resetPeakMemoryStats,
|
|
METH_O,
|
|
nullptr},
|
|
{nullptr}};
|
|
|
|
PyMethodDef* THXPModule_methods() {
|
|
return _THXPModule_methods;
|
|
}
|
|
|
|
namespace torch::xpu {
|
|
|
|
void initModule(PyObject* module) {
|
|
registerXpuDeviceProperties(module);
|
|
initXpuMethodBindings(module);
|
|
}
|
|
|
|
} // namespace torch::xpu
|