mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Enables clang-tidy rule [`misc-use-internal-linkage`](https://clang.llvm.org/extra/clang-tidy/checks/misc/use-internal-linkage.html). This new check was introduced in Clang-Tidy 18 and is available due to recent update of Clang-Tidy 19. The check marks functions and variables used only in the translation unit as static. Therefore undesired symbols are not leaked into other units, more link time optimisations are possible and the resulting binaries may be smaller. The detected violations were mostly fixed by using static. In other cases, the symbols were indeed consumed by others files, then their declaring headers were included. Still some declarations were wrong and have been fixed. Pull Request resolved: https://github.com/pytorch/pytorch/pull/148948 Approved by: https://github.com/Skylion007
343 lines
13 KiB
C++
343 lines
13 KiB
C++
#include <torch/csrc/lazy/python/init.h>
|
|
|
|
#include <ATen/FunctionalTensorWrapper.h>
|
|
#include <c10/core/Device.h>
|
|
#include <torch/csrc/jit/python/pybind.h>
|
|
#include <torch/csrc/lazy/backend/backend_device.h>
|
|
#include <torch/csrc/lazy/backend/backend_interface.h>
|
|
#include <torch/csrc/lazy/core/config.h>
|
|
#include <torch/csrc/lazy/core/debug_util.h>
|
|
#include <torch/csrc/lazy/core/internal_ops/ltc_ops.h>
|
|
#include <torch/csrc/lazy/core/ir_dump_util.h>
|
|
#include <torch/csrc/lazy/core/lazy_graph_executor.h>
|
|
#include <torch/csrc/lazy/core/metrics.h>
|
|
#include <torch/csrc/lazy/core/trie.h>
|
|
#include <torch/csrc/lazy/python/python_util.h>
|
|
#if !(defined(FBCODE_CAFFE2) || defined(OVRSOURCE))
|
|
#include <torch/csrc/lazy/ts_backend/ts_backend_impl.h>
|
|
#include <torch/csrc/lazy/ts_backend/ts_lowering_context.h>
|
|
#endif // FBCODE_CAFFE2 || OVRSOURCE
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
namespace torch::lazy {
|
|
|
|
// TODO(whc) backend 'device' related APIs are not very clear, this code could
|
|
// be simplified but it should probably be done together with
|
|
// designing/refactoring the overall approach to get/set of default eager/lazy
|
|
// device types
|
|
static torch::lazy::BackendDevice GetDeviceOrCurrent(
|
|
const std::string& device_str) {
|
|
if (device_str.empty()) {
|
|
getBackend()->GetDefaultDeviceType();
|
|
return torch::lazy::BackendDevice();
|
|
}
|
|
return torch::lazy::atenDeviceToBackendDevice(c10::Device(device_str));
|
|
}
|
|
|
|
static std::ptrdiff_t GetTensorId(const at::Tensor& tensor) {
|
|
torch::lazy::LazyTensorPtr lazy_tensor = torch::lazy::TryGetLtcTensor(tensor);
|
|
return lazy_tensor->GetUniqueId();
|
|
}
|
|
|
|
static std::string GetTensorsDump(
|
|
const std::vector<at::Tensor>& tensors,
|
|
const std::function<std::string(c10::ArrayRef<const torch::lazy::Node*>)>&
|
|
coverter) {
|
|
std::vector<const torch::lazy::Node*> nodes;
|
|
std::vector<torch::lazy::Value> values;
|
|
for (auto& tensor : tensors) {
|
|
auto inner = at::functionalization::impl::from_functional_tensor(tensor);
|
|
torch::lazy::LazyTensorPtr lazy_tensor =
|
|
torch::lazy::TryGetLtcTensor(inner);
|
|
values.push_back(lazy_tensor->GetIrValue());
|
|
nodes.push_back(values.back().node.get());
|
|
}
|
|
return coverter(nodes);
|
|
}
|
|
|
|
static std::vector<torch::lazy::LazyTensorPtr> GetLtcTensors(
|
|
const std::vector<at::Tensor>& tensors,
|
|
bool want_all) {
|
|
std::vector<torch::lazy::LazyTensorPtr> lazy_tensors;
|
|
lazy_tensors.reserve(tensors.size());
|
|
if (want_all) {
|
|
for (auto& tensor : tensors) {
|
|
lazy_tensors.push_back(torch::lazy::TryGetLtcTensor(tensor));
|
|
}
|
|
} else {
|
|
for (auto& tensor : tensors) {
|
|
auto lazy_tensor = torch::lazy::TryGetLtcTensor(tensor);
|
|
if (lazy_tensor) {
|
|
lazy_tensors.push_back(lazy_tensor);
|
|
}
|
|
}
|
|
}
|
|
return lazy_tensors;
|
|
}
|
|
|
|
static std::string GetTensorsBackendGraph(
|
|
const std::vector<at::Tensor>& tensors) {
|
|
std::vector<torch::lazy::LazyTensorPtr> lazy_tensors =
|
|
GetLtcTensors(tensors, /*want_all=*/false);
|
|
return torch::lazy::LazyGraphExecutor::Get()->DumpBackendComputation(
|
|
lazy_tensors);
|
|
}
|
|
|
|
static void SyncTensors(
|
|
const std::vector<at::Tensor>& tensors,
|
|
const std::vector<std::string>& devices,
|
|
bool wait,
|
|
bool sync_ltc_data) {
|
|
std::vector<torch::lazy::LazyTensorPtr> lazy_tensors =
|
|
GetLtcTensors(tensors, /*want_all=*/false);
|
|
torch::lazy::LazyGraphExecutor::Get()->SyncTensorsGraph(
|
|
&lazy_tensors, devices, wait, sync_ltc_data);
|
|
}
|
|
|
|
void initLazyBindings(PyObject* module) {
|
|
auto m = py::handle(module).cast<py::module>();
|
|
auto lazy = m.def_submodule("_lazy");
|
|
auto lazy_ts_backend = m.def_submodule("_lazy_ts_backend");
|
|
|
|
lazy.def(
|
|
"_mark_step",
|
|
// TODO(whc) this API should probably change from vector<string> to
|
|
// vector<c10::device> but in a separate PR
|
|
[](const std::string& device_str,
|
|
const std::vector<std::string>& devices,
|
|
bool wait) {
|
|
pybind11::gil_scoped_release no_gil;
|
|
auto backend_device = GetDeviceOrCurrent(device_str);
|
|
torch::lazy::LazyGraphExecutor::Get()->SyncLiveTensorsGraph(
|
|
&backend_device, devices, wait);
|
|
torch::lazy::LazyGraphExecutor::Get()->MarkStep(backend_device);
|
|
},
|
|
py::arg("device") = "",
|
|
py::arg("devices"),
|
|
py::arg("wait") = true);
|
|
lazy.def(
|
|
"_wait_device_ops",
|
|
[](const std::vector<std::string>& devices) {
|
|
pybind11::gil_scoped_release no_gil;
|
|
// TODO: Add support of non-empty devices.
|
|
if (!devices.empty()) {
|
|
LOG(ERROR) << "Non-empty devices are not supported.";
|
|
}
|
|
torch::lazy::LazyGraphExecutor::Get()->WaitDeviceOps({});
|
|
},
|
|
py::arg("devices"));
|
|
lazy.def("_reset_metrics", []() {
|
|
torch::lazy::MetricsArena::Get()->ResetCounters();
|
|
torch::lazy::MetricsArena::Get()->ResetMetrics();
|
|
});
|
|
lazy.def("_counter_names", []() { return torch::lazy::GetCounterNames(); });
|
|
lazy.def(
|
|
"_metrics_report", []() { return torch::lazy::CreateMetricReport(); });
|
|
lazy.def("_counter_value", [](const std::string& name) -> py::object {
|
|
torch::lazy::CounterData* data = torch::lazy::GetCounter(name);
|
|
return data != nullptr ? py::cast<int64_t>(data->Value()) : py::none();
|
|
});
|
|
lazy.def("_get_tensor_id", [](const at::Tensor& tensor) {
|
|
return GetTensorId(tensor);
|
|
});
|
|
|
|
lazy.def(
|
|
"_get_tensors_text",
|
|
[](const std::vector<at::Tensor>& tensors) -> std::string {
|
|
auto coverter = [](c10::ArrayRef<const torch::lazy::Node*> nodes) {
|
|
return torch::lazy::DumpUtil::ToText(nodes);
|
|
};
|
|
return GetTensorsDump(tensors, coverter);
|
|
});
|
|
lazy.def(
|
|
"_get_tensors_dot",
|
|
[](const std::vector<at::Tensor>& tensors) -> std::string {
|
|
auto coverter = [](c10::ArrayRef<const torch::lazy::Node*> nodes) {
|
|
return torch::lazy::DumpUtil::ToDot(nodes);
|
|
};
|
|
return GetTensorsDump(tensors, coverter);
|
|
});
|
|
lazy.def(
|
|
"_get_tensors_backend",
|
|
[](const std::vector<at::Tensor>& tensors) -> std::string {
|
|
return GetTensorsBackendGraph(tensors);
|
|
});
|
|
lazy.def("_get_graph_hash", [](const std::vector<at::Tensor>& tensors) {
|
|
std::vector<LazyTensorPtr> xtensors;
|
|
xtensors.reserve(tensors.size());
|
|
for (auto& tensor : tensors) {
|
|
xtensors.emplace_back(TryGetLtcTensor(tensor));
|
|
}
|
|
auto hash = LazyGraphExecutor::Get()->GetGraphHash(xtensors);
|
|
std::string bin((const char*)&hash, sizeof(hash));
|
|
return py::bytes(bin);
|
|
});
|
|
lazy.def(
|
|
"_sync_multi",
|
|
[](const std::vector<at::Tensor>& tensors,
|
|
const std::vector<std::string>& devices,
|
|
bool wait,
|
|
bool sync_ltc_data) {
|
|
pybind11::gil_scoped_release no_gil;
|
|
SyncTensors(tensors, devices, wait, sync_ltc_data);
|
|
},
|
|
py::arg("tensors"),
|
|
py::arg("devices"),
|
|
py::arg("wait") = true,
|
|
py::arg("sync_ltc_data") = true);
|
|
|
|
lazy.def("_get_force_fallback", []() {
|
|
return torch::lazy::getLTCForceFallback();
|
|
});
|
|
lazy.def("_set_force_fallback", [](std::string newval) {
|
|
torch::lazy::getLTCForceFallback() = std::move(newval);
|
|
});
|
|
lazy.def("_clear_ir_cache", []() { TrieCache::Get()->Clear(); });
|
|
lazy.def("_dump_ir_cache", [](const std::string& filename) {
|
|
TrieCache::Get()->DumpToDotFile(filename);
|
|
});
|
|
lazy.def("_set_reuse_ir", [](bool val) { FLAGS_torch_lazy_reuse_ir = val; });
|
|
lazy.def("_set_symbolic_shape_mode", [](bool val) {
|
|
FLAGS_ltc_enable_symbolic_shapes = val;
|
|
});
|
|
lazy.def("_get_symbolic_shape_mode", []() {
|
|
return FLAGS_ltc_enable_symbolic_shapes;
|
|
});
|
|
lazy.def("_get_default_device_type", []() {
|
|
return getBackend()->GetDefaultDeviceType()->toString();
|
|
});
|
|
|
|
lazy_ts_backend.def("_init", []() {
|
|
#if !(defined(FBCODE_CAFFE2) || defined(OVRSOURCE))
|
|
torch::lazy::InitTorchScriptBackend();
|
|
#else
|
|
TORCH_CHECK(false, "TorchScript backend not yet supported in FBCODE/OVRSOURCE builds");
|
|
#endif // !(defined(FBCODE_CAFFE2) || defined(OVRSOURCE))
|
|
});
|
|
|
|
/*
|
|
* Return tensor ids and tensors for DeviceData nodes.
|
|
* TODO(shunting) revisit this API for XLA
|
|
*/
|
|
lazy_ts_backend.def(
|
|
"_get_tensors_ts_device_data_node",
|
|
[](const std::vector<at::Tensor>& tensors)
|
|
-> std::pair<std::vector<int64_t>, std::vector<at::IValue>> {
|
|
#if !(defined(FBCODE_CAFFE2) || defined(OVRSOURCE))
|
|
std::vector<const Node*> roots;
|
|
for (auto& tensor : tensors) {
|
|
auto xtensor = TryGetLtcTensor(tensor);
|
|
roots.push_back(xtensor->GetIrValue().node.get());
|
|
}
|
|
auto post_order = Util::ComputePostOrder(roots);
|
|
std::vector<int64_t> tensor_ids;
|
|
std::vector<at::IValue> ivalues;
|
|
|
|
std::unordered_set<BackendData::Handle> data_handles_;
|
|
for (auto nodeptr : post_order) {
|
|
if (nodeptr->op() == *torch::lazy::ltc_device_data) {
|
|
const auto backend_data =
|
|
getBackend()->GetComputationDataFromNode(nodeptr);
|
|
|
|
auto infoptr = backend_data->info();
|
|
auto deviceDataInfoPtr =
|
|
(torch::lazy::LazyGraphExecutor::DeviceDataInfo*)infoptr;
|
|
auto* tsDataPtr = (torch::lazy::TSData*)backend_data.get();
|
|
|
|
// dedup DeviceData by handle
|
|
auto handle = tsDataPtr->GetHandle();
|
|
if (!data_handles_.insert(handle).second) {
|
|
continue;
|
|
}
|
|
tensor_ids.push_back(deviceDataInfoPtr->tensor_id);
|
|
/*
|
|
* If the TSData contains a tensor, then the tensor id will uniquely
|
|
* identify the tensor. We use that tensor id to find the tensor in
|
|
* other places: e.g. in the python forward method parameters.
|
|
*
|
|
* If the TSData contains a scalar, the tensor id itself is not
|
|
* important. We reuse the scalar value in future calls.
|
|
*/
|
|
if (tsDataPtr->HasValue()) {
|
|
ivalues.emplace_back(tsDataPtr->data());
|
|
} else {
|
|
TORCH_CHECK(tsDataPtr->scalar.has_value());
|
|
ivalues.emplace_back(tsDataPtr->scalar.value());
|
|
}
|
|
}
|
|
}
|
|
return std::make_pair(tensor_ids, ivalues);
|
|
#else
|
|
TORCH_CHECK(
|
|
false, "TorchScript backend not yet supported in FBCODE builds");
|
|
return std::make_pair(
|
|
std::vector<int64_t>(), std::vector<at::IValue>());
|
|
#endif // !(defined(FBCODE_CAFFE2) || defined(OVRSOURCE))
|
|
});
|
|
// TODO(shunting) revisit this part for XLA
|
|
lazy_ts_backend.def(
|
|
"_run_cached_graph",
|
|
[](const std::string& hash_str,
|
|
const std::vector<at::IValue>& graph_inputs) {
|
|
std::vector<at::Tensor> result;
|
|
#if !(defined(FBCODE_CAFFE2) || defined(OVRSOURCE))
|
|
TORCH_CHECK(hash_str.size() == sizeof(hash_t));
|
|
hash_t hash = *(hash_t*)(hash_str.c_str());
|
|
auto cachedComputation =
|
|
LazyGraphExecutor::Get()->GetComputationCache()->Get(hash);
|
|
TORCH_CHECK(
|
|
cachedComputation,
|
|
"Failed to get computation by hash. Maybe the entry get kicked out of the LRU cache"); // TODO implement a fallback mechanism, or make sure those entries never get kicked out
|
|
auto computationPtr =
|
|
(torch::lazy::TSComputation*)cachedComputation->computation.get();
|
|
|
|
std::vector<torch::jit::IValue> stack;
|
|
stack.reserve(graph_inputs.size());
|
|
for (const auto& arg : graph_inputs) {
|
|
stack.emplace_back(arg);
|
|
}
|
|
computationPtr->graph_executor().run(stack);
|
|
result.reserve(stack.size());
|
|
for (torch::jit::IValue elem : stack) {
|
|
result.push_back(elem.toTensor());
|
|
}
|
|
#else
|
|
TORCH_CHECK(
|
|
false, "TorchScript backend not yet supported in FBCODE builds");
|
|
#endif // !(defined(FBCODE_CAFFE2) || defined(OVRSOURCE))
|
|
return result;
|
|
});
|
|
lazy_ts_backend.def("_get_latest_computation_graph", []() {
|
|
#if !(defined(FBCODE_CAFFE2) || defined(OVRSOURCE))
|
|
auto computation = LazyGraphExecutor::Get()
|
|
->GetComputationCache()
|
|
->GetLatest()
|
|
->computation;
|
|
auto ts_computation = dynamic_cast<TSComputation*>(computation.get());
|
|
TORCH_CHECK(ts_computation, "Found non-TSComputation in cache");
|
|
return ts_computation->graph()->toString();
|
|
#else
|
|
TORCH_CHECK(
|
|
false, "TorchScript backend not yet supported in FBCODE builds");
|
|
return "";
|
|
#endif // !(defined(FBCODE_CAFFE2) || defined(OVRSOURCE))
|
|
});
|
|
|
|
// GetPythonFramesFunction() has not ever worked with torchdeploy/multipy
|
|
// possibly becuase GetPythonFrames resolves to external cpython rather
|
|
// than embedded cpython. So far this problem has only been observed
|
|
// internally, so we will just block it off there.
|
|
|
|
#if !(defined(USE_DEPLOY))
|
|
|
|
// When libtorch_python is loaded, we register the python frame getter
|
|
// otherwise, debug util simply omits python frames
|
|
GetPythonFramesFunction() = GetPythonFrames;
|
|
|
|
#endif // USE_DEPLOY
|
|
}
|
|
|
|
} // namespace torch::lazy
|