pytorch/torch/csrc/functorch/init.cpp
cyy 8fa81a6066 Enable misc-use-internal-linkage check and apply fixes (#148948)
Enables clang-tidy rule [`misc-use-internal-linkage`](https://clang.llvm.org/extra/clang-tidy/checks/misc/use-internal-linkage.html). This new check was introduced in Clang-Tidy 18 and is available due to recent update of Clang-Tidy 19.

The check marks functions and variables used only in the translation unit as static. Therefore undesired symbols are not leaked into other units, more link time optimisations are possible and the resulting binaries may be smaller.

The detected violations were mostly fixed by using static. In other cases, the symbols were indeed consumed by others files, then their declaring headers were included. Still some declarations were wrong and have been fixed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148948
Approved by: https://github.com/Skylion007
2025-03-12 14:22:56 +00:00

607 lines
20 KiB
C++

// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <ATen/FunctionalTensorWrapper.h>
#include <ATen/WrapDimUtils.h>
#include <torch/csrc/functorch/init.h>
#include <torch/csrc/utils/python_raii.h>
#include <torch/python.h>
#include <ATen/functorch/BatchRulesHelper.h>
#include <ATen/functorch/BatchedFallback.h>
#include <ATen/functorch/BatchedTensorImpl.h>
#include <ATen/functorch/DynamicLayer.h>
#include <ATen/functorch/Interpreter.h>
#include <ATen/functorch/LegacyVmapTransforms.h>
#include <ATen/functorch/PlumbingHelper.h>
#include <ATen/functorch/TensorWrapper.h>
#include <c10/core/AutogradState.h>
#include <iostream>
// This file contains functorch's Python bindings.
namespace torch::functorch::impl {
using namespace at::functorch;
static bool has_level(const Tensor& self, int64_t level) {
const auto* batched = maybeGetBatchedImpl(self);
if (!batched) {
return false;
}
return batched->level() >= level;
}
static Tensor _add_batch_dim(
const Tensor& self,
int64_t batch_dim,
int64_t level) {
return addBatchDim(self, batch_dim, level);
}
static Tensor _wrap_functional_tensor(const Tensor& self, int64_t level) {
auto t = at::functionalization::impl::to_functional_tensor(self);
at::functionalization::impl::unsafeGetFunctionalWrapper(t)->set_level(level);
return t;
}
static void _assert_wrapped_functional(
const Tensor& unwrapped,
const Tensor& wrapped) {
TORCH_INTERNAL_ASSERT(
at::functionalization::impl::isFunctionalTensor(wrapped));
TORCH_INTERNAL_ASSERT(
!at::functionalization::impl::isFunctionalTensor(unwrapped));
auto wrapped_impl =
at::functionalization::impl::unsafeGetFunctionalWrapper(wrapped);
auto& wrapped_inner = wrapped_impl->value();
TORCH_INTERNAL_ASSERT(
unwrapped.unsafeGetTensorImpl() == wrapped_inner.unsafeGetTensorImpl())
}
static void _propagate_functional_input_mutation(
const Tensor& unwrapped,
const Tensor& wrapped) {
TORCH_INTERNAL_ASSERT(
at::functionalization::impl::isFunctionalTensor(wrapped));
TORCH_INTERNAL_ASSERT(
!at::functionalization::impl::isFunctionalTensor(unwrapped));
auto wrapped_impl =
at::functionalization::impl::unsafeGetFunctionalWrapper(wrapped);
// Ensure that the input is up to date by committing any pending updates to
// the alias.
wrapped_impl->sync_();
auto& wrapped_inner = wrapped_impl->value();
// It would probably be more reasonable to check that the two tensors are
// aliased, but we can't do that unless we give BatchedTensorImpl a notion of
// storage.
if (unwrapped.unsafeGetTensorImpl() != wrapped_inner.unsafeGetTensorImpl()) {
if (unwrapped.sym_nbytes() != wrapped_inner.sym_nbytes()) {
// Functions might resize zero-sized inputs, which we need to reflect
// ehre.
unwrapped.resize__symint(wrapped_inner.sym_sizes());
}
// If the input tensor's metadata was mutated, then use as_strided_()
// to propagate the metadata change.
if (unwrapped.sym_sizes() != wrapped_inner.sym_sizes()) {
unwrapped.as_strided__symint(
wrapped_inner.sym_sizes(), wrapped_inner.sym_strides());
}
unwrapped.copy_(wrapped_inner);
}
}
static std::pair<Tensor, int64_t> remove_existing_batch_dim(
const BatchedTensorImpl* batched,
int64_t level) {
TORCH_INTERNAL_ASSERT(batched->level() == level);
return std::make_pair(batched->value(), batched->bdim());
}
// Poor man's version of np.moveaxis. Moves the dimension at `dst` to `src`
// while preserving the order of other existing dimensions.
// We should probably add np.moveaxis (it is more general) to PyTorch. (#36048)
// When we do, replace the following with it.
static Tensor _movedim(const Tensor& self, int64_t src, int64_t dst) {
auto logical_dim = self.dim();
src = at::maybe_wrap_dim(src, logical_dim);
dst = at::maybe_wrap_dim(dst, logical_dim);
if (src == dst) {
return self;
}
VmapDimVector permutation;
permutation.reserve(logical_dim);
for (int64_t dim = 0; dim < logical_dim; dim++) {
if (dim == src) {
continue;
}
permutation.push_back(dim);
}
permutation.insert(permutation.begin() + dst, src);
return self.permute(permutation);
}
// Removes the batch dim with level `level` from `self`. If this causes the
// last batch dim to be removed from a BatchedTensor, then this returns a
// regular Tensor.
//
// If the `level` of the batch dim to remove does not exist in `self`, then we
// add the batch dim in. This can happen if `self` didn't interact with a tensor
// inside the vmap level, for example,
// self = torch.randn(3)
// y = torch.randn(5)
// out = vmap(lambda x: vmap(lambda y: x)(y))(self)
// assert out.shape == (3, 5)
// Inside the inner vmap, `x` is a BatchedTensor with a single batch dimension
// corresponding to the *outer* vmap level and it doesn't have any dimensions
// that correspond to the inner vmap level so we need to create one for the
// user.
//
// `out_dim` controls where we should put the batch dimension in the output
// tensor.
static Tensor _remove_batch_dim(
const Tensor& self,
int64_t level,
const c10::SymInt& batch_size,
int64_t out_dim) {
TORCH_CHECK(
out_dim == 0 || !self.key_set().has(DispatchKey::BatchedNestedTensor),
"Nested tensors can only be vmapped over dim=0, but got dim=",
out_dim);
if (!has_level(self, level)) {
auto self_sizes = self.sym_sizes();
VmapSymDimVector expanded_sizes(self_sizes.begin(), self_sizes.end());
expanded_sizes.insert(expanded_sizes.begin() + out_dim, batch_size);
auto result = self.expand_symint(expanded_sizes);
return result;
}
// Must be batched if has_level(self, /*any_level*/)
const auto* batched = maybeGetBatchedImpl(self);
TORCH_INTERNAL_ASSERT(batched != nullptr);
auto [self_without_bdim, newly_exposed_logical_dim] =
remove_existing_batch_dim(batched, level);
auto result = _movedim(self_without_bdim, newly_exposed_logical_dim, out_dim);
return result;
}
static Tensor _unwrap_functional_tensor(
const Tensor& self,
bool add_back_views) {
// We only ever call that after popping out of a functionalize() call, in
// which case the current tensors should always be wrapped in a
// FunctionalTensorWrapper.
TORCH_INTERNAL_ASSERT(at::functionalization::impl::isFunctionalTensor(self));
auto functional =
at::functionalization::impl::unsafeGetFunctionalWrapper(self);
// when regenerating the (potentially mutated) input tensors, the
// functionalization pass regenerates them through a series of view_copy() op
// calls. Functorch wants to turn those back into view ops though. Ensure that
// the input is up to date by committing any pending updates to the alias.
at::functionalization::impl::FunctionalizationReapplyViewsGuard guard(
add_back_views);
bool any_updates = functional->apply_updates();
if (any_updates) {
functional->regenerate_from_base();
}
return functional->value();
}
static Tensor _wrap_for_grad(const Tensor& self, int64_t level) {
// NB: different behavior inside??
// return self;
// TORCH_INTERNAL_ASSERT(!maybeGetTensorWrapper(self));
// TORCH_INTERNAL_ASSERT(self.has_storage());
return makeTensorWrapper(self, level);
}
static Tensor _unwrap_for_grad(const Tensor& self, int64_t level) {
auto* result = maybeGetTensorWrapper(self);
if (!result) {
return self;
}
TORCH_INTERNAL_ASSERT(result->level().has_value());
if (result->level() == level) {
return result->value();
}
return self;
}
static int64_t dlevel(const Tensor& tensor) {
auto* wrapped = maybeGetTensorWrapper(tensor);
if (!wrapped) {
return 0;
}
if (!wrapped->is_alive()) {
return -1;
}
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
return wrapped->level().value();
}
static bool dump_tensor(const Tensor& self) {
dumpTensorCout(self);
return true;
}
static RandomnessType get_randomness_enum(const std::string& randomness) {
if (randomness == "error") {
return RandomnessType::Error;
} else if (randomness == "same") {
return RandomnessType::Same;
} else if (randomness == "different") {
return RandomnessType::Different;
} else {
TORCH_CHECK(
false, "randomness argument must be error, same, or different.");
}
}
static int64_t _grad_increment_nesting() {
// See NOTE [grad and vjp interaction with no_grad]
bool prev_grad_mode = c10::GradMode::is_enabled();
return initAndPushDynamicLayer(
TransformType::Grad, std::nullopt, std::nullopt, prev_grad_mode);
}
static int64_t _grad_decrement_nesting() {
auto layer = popDynamicLayerAndDeleteMetadata();
TORCH_INTERNAL_ASSERT(layer.key() == TransformType::Grad);
return layer.layerId();
}
static int64_t _jvp_increment_nesting() {
// See NOTE [grad and vjp interaction with no_grad]
bool prev_fwd_grad_mode =
c10::AutogradState::get_tls_state().get_fw_grad_mode();
return initAndPushDynamicLayer(
TransformType::Jvp,
std::nullopt,
std::nullopt,
std::nullopt,
prev_fwd_grad_mode);
}
static int64_t _jvp_decrement_nesting() {
auto layer = popDynamicLayerAndDeleteMetadata();
TORCH_INTERNAL_ASSERT(layer.key() == TransformType::Jvp);
return layer.layerId();
}
static int64_t _vmap_increment_nesting(
c10::SymInt batch_size,
const std::string& randomness) {
return initAndPushDynamicLayer(
TransformType::Vmap,
std::move(batch_size),
get_randomness_enum(randomness));
}
static int64_t _vmap_decrement_nesting() {
auto layer = popDynamicLayerAndDeleteMetadata();
TORCH_INTERNAL_ASSERT(layer.key() == TransformType::Vmap);
return layer.layerId();
}
static int64_t _func_increment_nesting(bool reapply_views) {
return initAndPushDynamicLayer(
TransformType::Functionalize,
std::nullopt,
std::nullopt,
std::nullopt,
std::nullopt,
/*functionalize_add_back_views=*/reapply_views);
}
static int64_t _func_decrement_nesting() {
auto layer = popDynamicLayerAndDeleteMetadata();
TORCH_INTERNAL_ASSERT(layer.key() == TransformType::Functionalize);
return layer.layerId();
}
static bool is_batchedtensor(const Tensor& tensor) {
auto* batched = maybeGetBatchedImpl(tensor);
return batched != nullptr;
}
static bool is_legacy_batchedtensor(const Tensor& tensor) {
return tensor.unsafeGetTensorImpl()->key_set().has(DispatchKey::Batched);
}
static bool is_gradtrackingtensor(const Tensor& tensor) {
auto* wrapped = maybeGetTensorWrapper(tensor);
return wrapped != nullptr;
}
static bool is_functionaltensor(const Tensor& tensor) {
return tensor.unsafeGetTensorImpl()->key_set().has(
c10::DispatchKey::Functionalize);
}
static Tensor get_unwrapped(const Tensor& tensor) {
auto* batched = maybeGetBatchedImpl(tensor);
if (batched) {
return batched->value();
}
auto* wrapped = maybeGetTensorWrapper(tensor);
if (wrapped) {
return wrapped->value();
}
if (at::functionalization::impl::isFunctionalTensor(tensor)) {
auto* functional =
at::functionalization::impl::unsafeGetFunctionalWrapper(tensor);
return functional->value();
}
TORCH_CHECK(false, "No wrappers present!");
}
static int64_t maybe_get_level(const Tensor& tensor) {
auto* batched = maybeGetBatchedImpl(tensor);
if (batched) {
return batched->level();
}
auto* wrapped = maybeGetTensorWrapper(tensor);
if (wrapped) {
if (wrapped->level()) {
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
return *wrapped->level();
}
// TODO: this is a weird special case...
return -2;
}
if (at::functionalization::impl::isFunctionalTensor(tensor)) {
auto* functional =
at::functionalization::impl::unsafeGetFunctionalWrapper(tensor);
return functional->level();
}
return -1;
}
static int64_t maybe_get_bdim(const Tensor& tensor) {
auto* batched = maybeGetBatchedImpl(tensor);
if (batched) {
return batched->bdim();
}
return -1;
}
static int64_t currentLevel() {
auto maybe_layer = maybeCurrentDynamicLayer();
TORCH_INTERNAL_ASSERT(maybe_layer.has_value());
int64_t current_level = maybe_layer->layerId();
return current_level;
}
static std::optional<int64_t> maybe_current_level() {
auto maybe_layer = maybeCurrentDynamicLayer();
if (maybe_layer.has_value()) {
int64_t current_level = maybe_layer->layerId();
return current_level;
}
return std::nullopt;
}
static void tls_set_vmap_excluded(bool excluded) {
c10::impl::tls_set_dispatch_key_excluded(
c10::DispatchKey::FuncTorchBatched, excluded);
}
static void _set_dynamic_layer_keys_included(bool value) {
return setDynamicLayerFrontBackKeysIncluded(value);
}
static void dump_dls() {
std::cout << getDynamicLayerStack() << '\n';
}
static void dump_local_tls() {
auto tls = c10::impl::tls_local_dispatch_key_set();
std::cout << "[Local Include] " << tls.included_ << '\n';
std::cout << "[Local Exclude] " << tls.excluded_ << '\n';
}
namespace {
// Pop the DynamicLayer stack until it's at the given depth.
void popDynamicLayerStackToDepth(size_t depth) {
while (at::functorch::getDynamicLayerStack().size() > depth) {
const auto top = popDynamicLayer();
switch (top.key()) {
case at::functorch::TransformType::Vmap:
_vmap_decrement_nesting();
break;
case at::functorch::TransformType::Grad:
_grad_decrement_nesting();
break;
case at::functorch::TransformType::Jvp:
_jvp_decrement_nesting();
break;
case at::functorch::TransformType::Functionalize:
_func_decrement_nesting();
break;
case at::functorch::TransformType::Torch:
popDynamicLayerAndDeleteMetadata();
break;
}
}
}
} // anonymous namespace
static std::tuple<Tensor, std::optional<int64_t>> unwrapBatched(
const Tensor& tensor,
int64_t level) {
auto* batched = maybeGetBatchedImpl(tensor);
if (!batched) {
return std::make_tuple(tensor, std::nullopt);
}
if (batched->level() == level) {
return std::make_tuple(batched->value(), batched->bdim());
}
return std::make_tuple(tensor, std::nullopt);
}
void initFuncTorchBindings(PyObject* module) {
auto _C = py::handle(module).cast<py::module>();
auto m = _C.def_submodule("_functorch");
m.def("_add_batch_dim", &_add_batch_dim, "add batch dim");
m.def("_remove_batch_dim", &_remove_batch_dim, "remove batch dim");
m.def("_unwrap_batched", &unwrapBatched);
m.def(
"_wrap_functional_tensor",
&_wrap_functional_tensor,
"add functional tensor");
m.def(
"_assert_wrapped_functional",
&_assert_wrapped_functional,
"assert wrapped functional");
m.def(
"_propagate_functional_input_mutation",
&_propagate_functional_input_mutation,
"propagate functional input mutations");
m.def(
"_unwrap_functional_tensor",
&_unwrap_functional_tensor,
"remove functional tensor");
m.def("_vmap_increment_nesting", &_vmap_increment_nesting);
m.def("_vmap_decrement_nesting", &_vmap_decrement_nesting);
m.def(
"_func_increment_nesting",
&_func_increment_nesting,
"functionalization start");
m.def(
"_func_decrement_nesting",
&_func_decrement_nesting,
"functionalization end");
m.def("_grad_increment_nesting", &_grad_increment_nesting);
m.def("_grad_decrement_nesting", &_grad_decrement_nesting);
m.def("_jvp_increment_nesting", &_jvp_increment_nesting);
m.def("_jvp_decrement_nesting", &_jvp_decrement_nesting);
m.def("_wrap_for_grad", &_wrap_for_grad, "wrap as gradtrackingtensor");
m.def(
"_unwrap_for_grad", &_unwrap_for_grad, "unwrap from gradtrackingtensor");
m.def(
"_set_vmap_fallback_warning_enabled",
&at::functorch::setVmapFallbackWarningEnabled,
"Set vmap fallback warnings");
m.def("_set_vmap_fallback_enabled", &at::functorch::setVmapFallbackEnabled);
m.def("_is_vmap_fallback_enabled", &at::functorch::isVmapFallbackEnabled);
m.def(
"set_inplace_requires_grad_allowed",
&at::functorch::setInplaceRequiresGradAllowed);
m.def(
"get_inplace_requires_grad_allowed",
&at::functorch::getInplaceRequiresGradAllowed);
m.def(
"set_single_level_autograd_function_allowed",
&at::functorch::setSingleLevelAutogradFunctionAllowed);
m.def(
"get_single_level_autograd_function_allowed",
&at::functorch::getSingleLevelAutogradFunctionAllowed);
m.def("unwrap_if_dead", &unwrapIfDead);
m.def("is_dead_tensor_wrapper", &isDeadTensorWrapper);
m.def("dlevel", &dlevel, "dlevel");
m.def("dump_tensor", &dump_tensor, "dump_tensor");
m.def("reshape_dim_into", &at::functorch::reshape_dim_into);
m.def("reshape_dim_outof", &at::functorch::reshape_dim_outof);
// various debugging things. Maybe we should offer these as first-class APIs
// on Tensors?
m.def("is_batchedtensor", &is_batchedtensor);
m.def("is_legacy_batchedtensor", &is_legacy_batchedtensor);
m.def("is_gradtrackingtensor", &is_gradtrackingtensor);
m.def("is_functionaltensor", &is_functionaltensor);
m.def("get_unwrapped", &get_unwrapped);
m.def("maybe_get_level", &maybe_get_level);
m.def("maybe_get_bdim", &maybe_get_bdim);
m.def("maybe_current_level", &maybe_current_level);
m.def("current_level", &currentLevel);
m.def("tls_set_vmap_excluded", &tls_set_vmap_excluded);
m.def("_set_dynamic_layer_keys_included", &_set_dynamic_layer_keys_included);
m.def("dump_dls", &dump_dls);
m.def("dump_local_tls", &dump_local_tls);
m.def("is_functorch_wrapped_tensor", [](const Tensor& tensor) {
return maybe_get_level(tensor) != -1;
});
m.def(
"get_interpreter_stack", []() -> std::optional<std::vector<Interpreter>> {
const auto& stack = getDynamicLayerStack();
if (stack.empty()) {
return std::nullopt;
}
std::vector<Interpreter> result;
result.reserve(stack.size());
for (auto i : stack) {
result.push_back(i.interpreter());
}
return result;
});
m.def("peek_interpreter_stack", []() -> std::optional<Interpreter> {
const auto& stack = getDynamicLayerStack();
if (stack.empty()) {
return std::nullopt;
}
auto result = stack.back().interpreter();
return result;
});
m.def("get_dynamic_layer_stack_depth", []() -> size_t {
return getDynamicLayerStack().size();
});
m.def(
"pop_dynamic_layer_stack_and_undo_to_depth",
&popDynamicLayerStackToDepth);
m.def("pop_dynamic_layer_stack", &popDynamicLayer);
m.def("push_dynamic_layer_stack", [](DynamicLayer layer) -> int64_t {
return pushDynamicLayer(std::move(layer));
});
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<DynamicLayer>(m, "DynamicLayer");
py::enum_<TransformType>(m, "TransformType")
.value("Torch", TransformType::Torch)
.value("Grad", TransformType::Grad)
.value("Jvp", TransformType::Jvp)
.value("Functionalize", TransformType::Functionalize)
.value("Vmap", TransformType::Vmap);
py::enum_<RandomnessType>(m, "RandomnessType")
.value("Error", RandomnessType::Error)
.value("Same", RandomnessType::Same)
.value("Different", RandomnessType::Different);
py::class_<Interpreter>(m, "CInterpreter")
.def("key", &Interpreter::key)
.def("level", &Interpreter::level);
py::class_<GradInterpreterPtr>(m, "CGradInterpreterPtr")
.def(py::init<const Interpreter*>())
.def("key", &GradInterpreterPtr::key)
.def("level", &GradInterpreterPtr::level)
.def("lift", &GradInterpreterPtr::lift)
.def("prevGradMode", &GradInterpreterPtr::prevGradMode);
py::class_<JvpInterpreterPtr>(m, "CJvpInterpreterPtr")
.def(py::init<const Interpreter*>())
.def("key", &JvpInterpreterPtr::key)
.def("level", &JvpInterpreterPtr::level)
.def("lift", &JvpInterpreterPtr::lift)
.def("prevFwdGradMode", &JvpInterpreterPtr::prevFwdGradMode);
py::class_<VmapInterpreterPtr>(m, "CVmapInterpreterPtr")
.def(py::init<const Interpreter*>())
.def("key", &VmapInterpreterPtr::key)
.def("level", &VmapInterpreterPtr::level)
.def("batchSize", &VmapInterpreterPtr::batchSize)
.def("randomness", &VmapInterpreterPtr::randomness);
py::class_<FunctionalizeInterpreterPtr>(m, "CFunctionalizeInterpreterPtr")
.def(py::init<const Interpreter*>())
.def("key", &FunctionalizeInterpreterPtr::key)
.def("level", &FunctionalizeInterpreterPtr::level)
.def(
"functionalizeAddBackViews",
&FunctionalizeInterpreterPtr::functionalizeAddBackViews);
}
} // namespace torch::functorch::impl