pytorch/test/cpp/api
anjali411 8ef7ccd669 Fix auto exponent issue for torch.pow (#47024)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47024

Fixes https://github.com/pytorch/pytorch/issues/46936

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#47024 Fix auto exponent issue for torch.pow**

Test Plan: Imported from OSS

Reviewed By: malfet

Differential Revision: D24698027

Pulled By: anjali411

fbshipit-source-id: f23fdb65c925166243593036e08214c4f041a63d
2020-11-14 22:50:12 -08:00
..
any.cpp
autograd.cpp Fix auto exponent issue for torch.pow (#47024) 2020-11-14 22:50:12 -08:00
CMakeLists.txt C++ API TransformerEncoderLayer (#42633) 2020-08-07 11:49:42 -07:00
dataloader.cpp
dispatch.cpp [Codemod][GleanFbcode] Remove dead includes in caffe2/test (#39023) 2020-05-27 14:07:26 -07:00
enum.cpp [C++ API] RNN / GRU / LSTM layer refactoring (#34322) 2020-03-15 17:48:29 -07:00
expanding-array.cpp
fft.cpp Add one dimensional FFTs to torch.fft namespace (#43011) 2020-09-19 23:32:22 -07:00
functional.cpp [c++] Distance-agnostic triplet margin loss (#45377) 2020-09-30 12:37:35 -07:00
init_baseline.h
init_baseline.py
init.cpp [Codemod][GleanFbcode] Remove dead includes in caffe2/test (#39023) 2020-05-27 14:07:26 -07:00
integration.cpp [C++ API] Remove deprecated torch::nn::BatchNorm / FeatureDropout / modules_ordered_dict and torch::nn::init::Nonlinearity / FanMode (#34508) 2020-03-12 10:09:58 -07:00
jit.cpp
memory.cpp
misc.cpp Throw error if torch.set_deterministic(True) is called with nondeterministic CuBLAS config (#41377) 2020-08-05 12:42:24 -07:00
module.cpp [pytorch] Route default warning sync to LOG(WARNING) - second try (#36984) 2020-04-23 01:08:00 -07:00
modulelist.cpp [C++ API] RNN / GRU / LSTM layer refactoring (#34322) 2020-03-15 17:48:29 -07:00
modules.cpp Fix return-type-is-always-copy warning (#47279) 2020-11-03 08:53:24 -08:00
namespace.cpp Remove using namespace torch::autograd from header files (#34423) 2020-03-09 10:31:21 -07:00
nn_utils.cpp [WIP] Fix cpp grad accessor API (#40887) 2020-07-16 09:11:12 -07:00
operations.cpp [Codemod][GleanFbcode] Remove dead includes in caffe2/test (#43953) 2020-09-01 21:48:28 -07:00
optim_baseline.h Add AdamW to C++ frontend (#40009) 2020-06-18 15:28:12 -07:00
optim_baseline.py Add AdamW to C++ frontend (#40009) 2020-06-18 15:28:12 -07:00
optim.cpp [WIP] Fix cpp grad accessor API (#40887) 2020-07-16 09:11:12 -07:00
ordered_dict.cpp
parallel_benchmark.cpp [aten] Pass std::function<> to thread_pool by value, instead of const ref. (#37681) 2020-05-05 08:41:38 -07:00
parallel.cpp [PyTorch] Modify data_parallel to work with small tensors (#37704) 2020-05-04 11:06:42 -07:00
parameterdict.cpp Python/C++ API Parity: Add impl and tests for ParameterDict (#40654) 2020-06-29 08:50:44 -07:00
parameterlist.cpp Impl for ParameterList (#41259) 2020-07-12 20:50:31 -07:00
README.md
rnn.cpp [C++ API] RNN / GRU / LSTM layer refactoring (#34322) 2020-03-15 17:48:29 -07:00
sequential.cpp [C++ API] RNN / GRU / LSTM layer refactoring (#34322) 2020-03-15 17:48:29 -07:00
serialize.cpp Add AdamW to C++ frontend (#40009) 2020-06-18 15:28:12 -07:00
static.cpp
support.cpp
support.h Changes warnings generated in cpp to show point of Python origination (#36052) 2020-04-25 21:18:58 -07:00
tensor_cuda.cpp
tensor_indexing.cpp [pytorch] Route default warning sync to LOG(WARNING) - second try (#36984) 2020-04-23 01:08:00 -07:00
tensor_options_cuda.cpp
tensor_options.cpp
tensor.cpp Change to.dtype_layout to c10-full (#41169) 2020-07-10 16:04:34 -07:00
torch_include.cpp
transformer.cpp C++ APIs Transformer NN Module Top Layer (#44333) 2020-09-11 08:25:27 -07:00

C++ Frontend Tests

In this folder live the tests for PyTorch's C++ Frontend. They use the GoogleTest test framework.

CUDA Tests

To make a test runnable only on platforms with CUDA, you should suffix your test with _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_CUDA) { }

To make it runnable only on platforms with at least two CUDA machines, suffix it with _MultiCUDA instead of _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_MultiCUDA) { }

There is logic in main.cpp that detects the availability and number of CUDA devices and supplies the appropriate negative filters to GoogleTest.

Integration Tests

Integration tests use the MNIST dataset. You must download it by running the following command from the PyTorch root folder:

$ python tools/download_mnist.py -d test/cpp/api/mnist

The required paths will be referenced as test/cpp/api/mnist/... in the test code, so you must run the integration tests from the PyTorch root folder.