pytorch/docs/source/fx.experimental.rst
Joel Schlosser 31ba6ee49b Traceable wrapper subclass support for deferred runtime asserts (#126198)
The padded dense -> jagged conversion op has the signature:
```
_fbgemm_dense_to_jagged_forward(Tensor dense, Tensor[] offsets, SymInt? total_L=None) -> Tensor
```

when `total_L` is not specified, the meta registration has a data-dependent output shape (based on `offsets[0][-1]`). Returning an unbacked SymInt here should work in theory, but traceable wrapper subclass support is missing in later code to handle deferred runtime asserts. This PR fixes this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126198
Approved by: https://github.com/ezyang
2024-05-21 01:21:46 +00:00

54 lines
1.1 KiB
ReStructuredText

.. currentmodule:: torch.fx.experimental
torch.fx.experimental
=====================
.. warning::
These APIs are experimental and subject to change without notice.
torch.fx.experimental.symbolic_shapes
-------------------------------------
.. currentmodule:: torch.fx.experimental.symbolic_shapes
.. automodule:: torch.fx.experimental.symbolic_shapes
.. autosummary::
:toctree: generated
:nosignatures:
ShapeEnv
DimDynamic
StrictMinMaxConstraint
RelaxedUnspecConstraint
EqualityConstraint
SymbolicContext
StatelessSymbolicContext
StatefulSymbolicContext
SubclassSymbolicContext
DimConstraints
ShapeEnvSettings
ConvertIntKey
CallMethodKey
PropagateUnbackedSymInts
DivideByKey
InnerTensorKey
hint_int
is_concrete_int
is_concrete_bool
has_free_symbols
definitely_true
definitely_false
guard_size_oblivious
parallel_or
parallel_and
sym_eq
constrain_range
constrain_unify
canonicalize_bool_expr
statically_known_true
lru_cache
check_consistent
compute_unbacked_bindings
rebind_unbacked
resolve_unbacked_bindings