mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: [2/N] Implement Enum JIT support Add prim::EnumName and prim::EnumValue and their lowerings to support getting `name` and `value` attribute of Python enums. Supported: Enum-typed function targuments using Enum type and comparing them Support getting name/value attrs of enums TODO: Add PyThon sugared value for Enum Support Enum-typed return values Support enum values of different types in same Enum class Support serialization and deserialization Pull Request resolved: https://github.com/pytorch/pytorch/pull/41965 Reviewed By: eellison Differential Revision: D22714446 Pulled By: gmagogsfm fbshipit-source-id: db8c4e26b657e7782dbfc2b58a141add1263f76e
163 lines
4.9 KiB
Python
163 lines
4.9 KiB
Python
import os
|
|
import sys
|
|
|
|
import torch
|
|
from enum import Enum
|
|
|
|
# Make the helper files in test/ importable
|
|
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
|
sys.path.append(pytorch_test_dir)
|
|
from torch.testing._internal.jit_utils import JitTestCase
|
|
|
|
if __name__ == '__main__':
|
|
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
|
|
"\tpython test/test_jit.py TESTNAME\n\n"
|
|
"instead.")
|
|
|
|
class TestEnum(JitTestCase):
|
|
def setUp(self):
|
|
self.saved_enum_env_var = os.environ.get("EXPERIMENTAL_ENUM_SUPPORT", None)
|
|
os.environ["EXPERIMENTAL_ENUM_SUPPORT"] = "1"
|
|
|
|
def tearDown(self):
|
|
if self.saved_enum_env_var:
|
|
os.environ["EXPERIMENTAL_ENUM_SUPPORT"] = self.saved_enum_env_var
|
|
|
|
def test_enum_value_types(self):
|
|
global IntEnum
|
|
|
|
class IntEnum(Enum):
|
|
FOO = 1
|
|
BAR = 2
|
|
|
|
global FloatEnum
|
|
|
|
class FloatEnum(Enum):
|
|
FOO = 1.2
|
|
BAR = 2.3
|
|
|
|
global StringEnum
|
|
|
|
class StringEnum(Enum):
|
|
FOO = "foo as in foo bar"
|
|
BAR = "bar as in foo bar"
|
|
|
|
def supported_enum_types(a: IntEnum, b: FloatEnum, c: StringEnum):
|
|
return (a.name, b.name, c.name)
|
|
# TODO(gmagogsfm): Re-enable hooks when serialization/deserialization
|
|
# is supported.
|
|
with torch._jit_internal._disable_emit_hooks():
|
|
torch.jit.script(supported_enum_types)
|
|
|
|
global TensorEnum
|
|
|
|
class TensorEnum(Enum):
|
|
FOO = torch.tensor(0)
|
|
BAR = torch.tensor(1)
|
|
|
|
def unsupported_enum_types(a: TensorEnum):
|
|
return a.name
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "Cannot create Enum with value type 'Tensor'"):
|
|
torch.jit.script(unsupported_enum_types)
|
|
|
|
def test_enum_comp(self):
|
|
global Color
|
|
|
|
class Color(Enum):
|
|
RED = 1
|
|
GREEN = 2
|
|
|
|
def enum_comp(x: Color, y: Color) -> bool:
|
|
return x == y
|
|
|
|
# TODO(gmagogsfm): Re-enable hooks when serialization/deserialization
|
|
# is supported.
|
|
with torch._jit_internal._disable_emit_hooks():
|
|
scripted_enum_comp = torch.jit.script(enum_comp)
|
|
|
|
self.assertEqual(
|
|
scripted_enum_comp(Color.RED, Color.RED),
|
|
enum_comp(Color.RED, Color.RED))
|
|
|
|
self.assertEqual(
|
|
scripted_enum_comp(Color.RED, Color.GREEN),
|
|
enum_comp(Color.RED, Color.GREEN))
|
|
|
|
def test_heterogenous_value_type_enum_error(self):
|
|
global Color
|
|
|
|
class Color(Enum):
|
|
RED = 1
|
|
GREEN = "green"
|
|
|
|
def enum_comp(x: Color, y: Color) -> bool:
|
|
return x == y
|
|
|
|
# TODO(gmagogsfm): Re-enable hooks when serialization/deserialization
|
|
# is supported.
|
|
with self.assertRaisesRegex(RuntimeError, "Could not unify type list"):
|
|
scripted_enum_comp = torch.jit.script(enum_comp)
|
|
|
|
def test_enum_name(self):
|
|
global Color
|
|
|
|
class Color(Enum):
|
|
RED = 1
|
|
GREEN = 2
|
|
|
|
def enum_name(x: Color) -> str:
|
|
return x.name
|
|
|
|
# TODO(gmagogsfm): Re-enable hooks when serialization/deserialization
|
|
# is supported.
|
|
with torch._jit_internal._disable_emit_hooks():
|
|
scripted_enum_name = torch.jit.script(enum_name)
|
|
|
|
self.assertEqual(scripted_enum_name(Color.RED), Color.RED.name)
|
|
self.assertEqual(scripted_enum_name(Color.GREEN), Color.GREEN.name)
|
|
|
|
def test_enum_value(self):
|
|
global Color
|
|
|
|
class Color(Enum):
|
|
RED = 1
|
|
GREEN = 2
|
|
|
|
def enum_value(x: Color) -> int:
|
|
return x.value
|
|
|
|
# TODO(gmagogsfm): Re-enable hooks when serialization/deserialization
|
|
# is supported.
|
|
with torch._jit_internal._disable_emit_hooks():
|
|
scripted_enum_value = torch.jit.script(enum_value)
|
|
|
|
self.assertEqual(scripted_enum_value(Color.RED), Color.RED.value)
|
|
self.assertEqual(scripted_enum_value(Color.GREEN), Color.GREEN.value)
|
|
|
|
|
|
# Tests that Enum support features are properly guarded before they are mature.
|
|
class TestEnumFeatureGuard(JitTestCase):
|
|
def setUp(self):
|
|
self.saved_enum_env_var = os.environ.get("EXPERIMENTAL_ENUM_SUPPORT", None)
|
|
if self.saved_enum_env_var:
|
|
del os.environ["EXPERIMENTAL_ENUM_SUPPORT"]
|
|
|
|
def tearDown(self):
|
|
if self.saved_enum_env_var:
|
|
os.environ["EXPERIMENTAL_ENUM_SUPPORT"] = self.saved_enum_env_var
|
|
|
|
def test_enum_comp_disabled(self):
|
|
global Color
|
|
|
|
class Color(Enum):
|
|
RED = 1
|
|
GREEN = 2
|
|
|
|
def enum_comp(x: Color, y: Color) -> bool:
|
|
return x == y
|
|
|
|
with self.assertRaisesRegex(NotImplementedError,
|
|
"Enum support is work in progress"):
|
|
torch.jit.script(enum_comp)
|