mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/63776 I reverted this out of an abundance of caution because some test failures occurred, but they were all due to precision issues fixed lower in this stack. Let's try again. I've rolled the elimination of the allow-parallelism-in-fusions toggle into this diff since they're pretty tightly coupled. ghstack-source-id: 136529847 Test Plan: CI Reviewed By: huiguoo Differential Revision: D30484555 fbshipit-source-id: 38fd33520f710585d1130c365a8c60c9ce794a59
1370 lines
48 KiB
C++
1370 lines
48 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <test/cpp/tensorexpr/test_base.h>
|
|
#include <torch/csrc/jit/frontend/code_template.h>
|
|
#include <torch/csrc/jit/ir/ir.h>
|
|
#include <torch/csrc/jit/ir/irparser.h>
|
|
#include <torch/csrc/jit/passes/constant_propagation.h>
|
|
#include <torch/csrc/jit/tensorexpr/kernel.h>
|
|
#include <torch/csrc/jit/tensorexpr/loopnest.h>
|
|
#include <torch/csrc/jit/tensorexpr/tensor.h>
|
|
#include <torch/csrc/jit/testing/file_check.h>
|
|
#include <torch/torch.h>
|
|
#include <cmath>
|
|
#include <sstream>
|
|
#include <stdexcept>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
using namespace torch::indexing;
|
|
using namespace torch::jit::tensorexpr;
|
|
|
|
class Kernel : public ::testing::Test {
|
|
public:
|
|
// NOLINTNEXTLINE(modernize-use-override,cppcoreguidelines-explicit-virtual-functions)
|
|
void SetUp() {
|
|
getTEMustUseLLVMOnCPU() = false;
|
|
}
|
|
};
|
|
|
|
TEST_F(Kernel, InliningIntermediates) {
|
|
// here, each mul has only one use, so it should be completely inlined
|
|
{
|
|
const auto graph_string = R"IR(
|
|
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
|
|
%1 : Float(5, 3, strides=[3, 1], device=cpu)):
|
|
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
|
|
%one : int = prim::Constant[value=1]()
|
|
%4 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
|
|
%5: Float(5, 3, strides=[3, 1]) = aten::add(%4, %1, %one)
|
|
return (%5))IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
TensorExprKernel k(graph);
|
|
auto stmt = k.getCodeGenStmt();
|
|
std::ostringstream oss;
|
|
oss << *stmt;
|
|
torch::jit::testing::FileCheck().check_not("aten_mul")->run(oss.str());
|
|
}
|
|
{
|
|
const auto graph_template = R"IR(
|
|
graph(%0 : Float(5, 3, strides=[3, 1], device=${device}),
|
|
%1 : Float(5, 3, strides=[3, 1], device=${device})):
|
|
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
|
|
%one : int = prim::Constant[value=1]()
|
|
%3 : Float(5, 3, strides=[3, 1]) = aten::sub(%0, %2, %one)
|
|
%4 : Float(5, 3, strides=[3, 1]) = aten::add(%3, %0, %one)
|
|
%5 : Float(5, 3, strides=[3, 1]) = aten::div(%3, %0)
|
|
return (%4, %5))IR";
|
|
for (bool use_cuda : {false, true}) {
|
|
if (!torch::cuda::is_available() && use_cuda) {
|
|
continue;
|
|
}
|
|
|
|
TemplateEnv env;
|
|
env.s("device", use_cuda ? "cuda:0" : "cpu");
|
|
const auto graph_string = format(graph_template, env);
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
// NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores)
|
|
auto device = use_cuda ? kCUDA : kCPU;
|
|
TensorExprKernel k(graph);
|
|
auto stmt = k.getCodeGenStmt();
|
|
std::ostringstream oss;
|
|
oss << *stmt;
|
|
// aten_mul only has one use, inlined completely
|
|
torch::jit::testing::FileCheck().check_not("aten_mul")->run(oss.str());
|
|
|
|
// aten_sub should be removed by the CUDA backend by metavar rewriting
|
|
// and by the CPU backend by horizontal fusion.
|
|
// NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores,cppcoreguidelines-avoid-magic-numbers)
|
|
size_t num_out1_uses = use_cuda ? 0 : 5;
|
|
torch::jit::testing::FileCheck().check_not("aten_sub")->run(oss.str());
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(Kernel, _1) {
|
|
const auto graph_string = R"IR(
|
|
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
|
|
%1 : Float(5, 3, strides=[3, 1], device=cpu)):
|
|
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
|
|
%3 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
|
|
return (%3))IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto b = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto ref = a * (a * b);
|
|
TensorExprKernel k(graph);
|
|
std::vector<at::Tensor> inputs = {a, b};
|
|
StmtPtr s = k.getCodeGenStmt();
|
|
|
|
std::ostringstream oss;
|
|
oss << *s;
|
|
|
|
// Check the IR we produced
|
|
const std::string& verification_pattern =
|
|
R"IR(
|
|
# CHECK: for
|
|
# CHECK-NEXT: for
|
|
# CHECK-NOT: for)IR";
|
|
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
|
|
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
o = stack[0].toTensor();
|
|
for (size_t i = 0; i < 5 * 3; i++) {
|
|
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
|
|
}
|
|
}
|
|
|
|
TEST_F(Kernel, _2) {
|
|
const auto graph_string = R"IR(
|
|
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
|
|
%1 : Float(5, 3, strides=[1, 5], device=cpu)):
|
|
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
|
|
%3 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
|
|
return (%3))IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto b =
|
|
at::rand({3, 5}, TensorOptions(kCPU).dtype(at::kFloat)).transpose(0, 1);
|
|
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto ref = a * (a * b);
|
|
TensorExprKernel k(graph);
|
|
std::vector<at::Tensor> inputs = {a, b};
|
|
StmtPtr s = k.getCodeGenStmt();
|
|
|
|
std::ostringstream oss;
|
|
oss << *s;
|
|
|
|
// Check the IR we produced
|
|
const std::string& verification_pattern =
|
|
R"IR(
|
|
# CHECK: for
|
|
# CHECK-NEXT: for
|
|
# CHECK-NOT: for)IR";
|
|
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
|
|
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
o = stack[0].toTensor();
|
|
for (size_t i = 0; i < 5 * 3; i++) {
|
|
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
|
|
}
|
|
}
|
|
|
|
TEST_F(Kernel, _3) {
|
|
const auto graph_string = R"IR(
|
|
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
|
|
%1 : Float(5, 3, strides=[12, 2], device=cpu)):
|
|
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
|
|
%3 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
|
|
return (%3))IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto b = at::rand({10, 6}, TensorOptions(kCPU).dtype(at::kFloat))
|
|
.index({Slice(None, None, 2), Slice(None, None, 2)});
|
|
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto ref = a * (a * b);
|
|
TensorExprKernel k(graph);
|
|
std::vector<at::Tensor> inputs = {a, b};
|
|
StmtPtr s = k.getCodeGenStmt();
|
|
|
|
std::ostringstream oss;
|
|
oss << *s;
|
|
|
|
// Check the IR we produced
|
|
const std::string& verification_pattern =
|
|
R"IR(
|
|
# CHECK: for
|
|
# CHECK-NEXT: for
|
|
# CHECK-NOT: for)IR";
|
|
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
|
|
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
o = stack[0].toTensor();
|
|
for (size_t i = 0; i < 5 * 3; i++) {
|
|
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
|
|
}
|
|
}
|
|
|
|
TEST_F(Kernel, ParallelStrided) {
|
|
const auto graph_string = R"IR(
|
|
graph(%0 : Float(5, 3, 40005, strides=[120015, 40005, 1], device=cpu),
|
|
%1 : Float(5, 3, 40005, strides=[960120, 160020, 2], device=cpu)):
|
|
%2 : Float(5, 3, 40005, strides=[120015, 40005, 1]) = aten::mul(%0, %1)
|
|
%3 : Float(5, 3, 40005, strides=[120015, 40005, 1]) = aten::mul(%0, %2)
|
|
return (%3))IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
auto a = at::rand({5, 3, 40005}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto b = at::rand({10, 6, 80010}, TensorOptions(kCPU).dtype(at::kFloat))
|
|
.index(
|
|
{Slice(None, None, 2),
|
|
Slice(None, None, 2),
|
|
Slice(None, None, 2)});
|
|
auto ref = a * (a * b);
|
|
auto o = at::zeros_like(ref);
|
|
TensorExprKernel k(graph);
|
|
std::vector<at::Tensor> inputs = {a, b};
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
o = stack[0].toTensor();
|
|
for (size_t i = 0; i < 5 * 3; i++) {
|
|
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
|
|
}
|
|
}
|
|
|
|
TEST_F(Kernel, DISABLED_Shape_Inference) {
|
|
// disabled: doesn't do stride propagation, and isn't being used currently
|
|
|
|
// Test TensorExpr shape inference capabilities: it should only require shapes
|
|
// for the inputs
|
|
{
|
|
const auto graph_string = R"IR(
|
|
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
|
|
%1 : Float(5, 3, strides=[12, 2], device=cpu)):
|
|
%2 : Tensor = aten::mul(%0, %1)
|
|
%3 : Tensor = aten::mul(%0, %2)
|
|
return (%3))IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto b = at::rand({10, 6}, TensorOptions(kCPU).dtype(at::kFloat))
|
|
.index({Slice(None, None, 2), Slice(None, None, 2)});
|
|
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto ref = a * (a * b);
|
|
TensorExprKernel k(graph);
|
|
std::vector<at::Tensor> inputs = {a, b};
|
|
StmtPtr s = k.getCodeGenStmt();
|
|
|
|
std::ostringstream oss;
|
|
oss << *s;
|
|
|
|
// Check the IR we produced
|
|
const std::string& verification_pattern =
|
|
R"IR(
|
|
# CHECK: for
|
|
# CHECK-NEXT: for
|
|
# CHECK-NOT: for)IR";
|
|
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
|
|
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
o = stack[0].toTensor();
|
|
for (size_t i = 0; i < 5 * 3; i++) {
|
|
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
|
|
}
|
|
}
|
|
{
|
|
const auto graph_string = R"IR(
|
|
graph(%0 : Float(8, 8, strides=[8, 1], device=cpu),
|
|
%1 : Float(8, 8, strides=[8, 1], device=cpu)):
|
|
%2 : Tensor = aten::mul(%0, %1)
|
|
%3 : Tensor, %4 : Tensor = prim::ConstantChunk[dim=1,chunks=2](%2)
|
|
%r : Tensor = aten::mul(%3, %4)
|
|
return (%r))IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
auto a = at::rand({8, 8}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto b = at::rand({8, 8}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto o = at::zeros({8, 4}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto t = torch::chunk(a * b, 2, 1);
|
|
auto ref = t[0] * t[1];
|
|
TensorExprKernel k(graph);
|
|
std::vector<at::Tensor> inputs = {a, b};
|
|
StmtPtr s = k.getCodeGenStmt();
|
|
|
|
std::ostringstream oss;
|
|
oss << *s;
|
|
|
|
// Check the IR we produced
|
|
const std::string& verification_pattern =
|
|
R"IR(
|
|
# CHECK: for)IR";
|
|
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
|
|
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
o = stack[0].toTensor();
|
|
CHECK_EQ(o.sizes()[0], 8);
|
|
CHECK_EQ(o.sizes()[1], 4);
|
|
for (size_t i = 0; i < 8 * 4; i++) {
|
|
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
|
|
}
|
|
}
|
|
{
|
|
// Test that shape inference handles aten::unsqueeze
|
|
|
|
const auto graph_string = R"IR(
|
|
graph(%a : Float(4, 2, strides=[2, 1], device=cpu),
|
|
%b : Float(4, 3, 2, strides=[6, 2, 1], device=cpu),
|
|
%c : Float(3, 2, 2, strides=[4, 2, 1], device=cpu)):
|
|
%one : int = prim::Constant[value=1]()
|
|
%minus_one : int = prim::Constant[value=-1]()
|
|
%three : int = prim::Constant[value=3]()
|
|
%minus_four : int = prim::Constant[value=-4]()
|
|
%a1 : Tensor = aten::unsqueeze(%a, %one) # new size: [4,1,2]
|
|
%a2 : Tensor = aten::unsqueeze(%a1, %minus_one) # new size: [4,1,2,1]
|
|
%b1 : Tensor = aten::unsqueeze(%b, %three) # new size: [4,3,2,1]
|
|
%c1 : Tensor = aten::unsqueeze(%c, %minus_four) # new size: [1,3,2,2]
|
|
%ab : Tensor = aten::mul(%a2, %b1) # expected size: [4,3,2,1]
|
|
%abc : Tensor = aten::mul(%ab, %c1) # expected size: [4,3,2,2]
|
|
return (%abc))IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
auto a = at::rand({4, 2}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto b = at::rand({4, 3, 2}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto c = at::rand({3, 2, 2}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto o = at::zeros({4, 3, 2, 2}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto ref = at::unsqueeze(at::unsqueeze(a, 1), -1) * at::unsqueeze(b, 3) *
|
|
at::unsqueeze(c, -4);
|
|
|
|
TensorExprKernel k(graph);
|
|
std::vector<at::Tensor> inputs = {a, b, c};
|
|
StmtPtr s = k.getCodeGenStmt();
|
|
|
|
std::ostringstream oss;
|
|
oss << *s;
|
|
|
|
// Check the IR we produced
|
|
const std::string& verification_pattern =
|
|
R"IR(
|
|
# CHECK: for
|
|
# CHECK-NEXT: for
|
|
# CHECK-NEXT: for
|
|
# CHECK-NEXT: for
|
|
# CHECK-NEXT: aten_mul)IR";
|
|
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
|
|
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
o = stack[0].toTensor();
|
|
|
|
// Check sizes
|
|
CHECK_EQ(o.sizes().size(), ref.sizes().size());
|
|
size_t num_el = 1;
|
|
for (size_t idx = 0; idx < ref.sizes().size(); idx++) {
|
|
CHECK_EQ(o.sizes()[idx], ref.sizes()[idx]);
|
|
num_el *= ref.sizes()[idx];
|
|
}
|
|
|
|
// Check the contents
|
|
for (size_t i = 0; i < num_el; i++) {
|
|
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
|
|
}
|
|
}
|
|
{
|
|
// Test that shape inference handles aten::cat
|
|
|
|
const auto graph_string = R"IR(
|
|
graph(%a : Float(5, 3, 2, strides=[6, 2, 1], device=cpu),
|
|
%b : Float(5, 7, 2, strides=[14, 2, 1], device=cpu),
|
|
%c : Float(5, 9, 2, strides=[18, 2, 1], device=cpu)):
|
|
%dim : int = prim::Constant[value=1]()
|
|
%inputs : Tensor[] = prim::ListConstruct(%a, %b, %c)
|
|
%r : Tensor = aten::cat(%inputs, %dim) # new size: [5,19,2]
|
|
return (%r))IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
auto a = at::rand({5, 3, 2}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto b = at::rand({5, 7, 2}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto c = at::rand({5, 9, 2}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto o = at::zeros({5, 19, 2}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto ref = at::cat({a, b, c}, 1);
|
|
|
|
TensorExprKernel k(graph);
|
|
std::vector<at::Tensor> inputs = {a, b, c};
|
|
StmtPtr s = k.getCodeGenStmt();
|
|
|
|
std::ostringstream oss;
|
|
oss << *s;
|
|
|
|
// Check the IR we produced
|
|
const std::string& verification_pattern =
|
|
R"IR(
|
|
# CHECK: for
|
|
# CHECK-NEXT: for
|
|
# CHECK-NEXT: for
|
|
# CHECK-NEXT: aten_cat)IR";
|
|
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
|
|
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
o = stack[0].toTensor();
|
|
|
|
// Check sizes
|
|
CHECK_EQ(o.sizes().size(), ref.sizes().size());
|
|
size_t num_el = 1;
|
|
for (size_t idx = 0; idx < ref.sizes().size(); idx++) {
|
|
CHECK_EQ(o.sizes()[idx], ref.sizes()[idx]);
|
|
num_el *= ref.sizes()[idx];
|
|
}
|
|
|
|
// Check the contents
|
|
for (size_t i = 0; i < num_el; i++) {
|
|
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
|
|
}
|
|
}
|
|
{
|
|
// Test that we throw an error when input list for aten::cat is empty
|
|
|
|
const auto graph_string = R"IR(
|
|
graph():
|
|
%dim : int = prim::Constant[value=1]()
|
|
%inputs : Tensor[] = prim::ListConstruct()
|
|
%r : Tensor = aten::cat(%inputs, %dim)
|
|
return (%r))IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
auto compile = [&]() {
|
|
TensorExprKernel k(graph);
|
|
k.getCodeGenStmt();
|
|
};
|
|
ASSERT_THROWS_WITH(compile(), "Empty input list is passed to aten::cat");
|
|
}
|
|
{
|
|
// Test that we throw an error when 'dim' passed to aten::cat is invalid
|
|
|
|
const auto ir_dim_99 = R"IR(
|
|
graph(%a : Float(5, 3, 2, strides=[6, 2, 1], device=cpu),
|
|
%b : Float(5, 3, 2, strides=[6, 2, 1], device=cpu)):
|
|
%dim : int = prim::Constant[value=99]()
|
|
%inputs : Tensor[] = prim::ListConstruct(%a, %b)
|
|
%r : Float(5, 3, 2, strides=[6, 2, 1], device=cpu) = aten::cat(%inputs, %dim)
|
|
return (%r))IR";
|
|
const auto ir_dim_minus_6 = R"IR(
|
|
graph(%a : Float(5, 3, 2, strides=[6, 2, 1], device=cpu),
|
|
%b : Float(5, 3, 2, strides=[6, 2, 1], device=cpu)):
|
|
%dim : int = prim::Constant[value=-6]()
|
|
%inputs : Tensor[] = prim::ListConstruct(%a, %b)
|
|
%r : Float(5, 3, 2, strides=[6, 2, 1], device=cpu) = aten::cat(%inputs, %dim)
|
|
return (%r))IR";
|
|
|
|
auto compile = [](const std::string& graph_string) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
TensorExprKernel k(graph);
|
|
k.getCodeGenStmt();
|
|
};
|
|
ASSERT_THROWS_WITH(compile(ir_dim_99), "Invalid index");
|
|
ASSERT_THROWS_WITH(compile(ir_dim_minus_6), "Invalid index");
|
|
}
|
|
}
|
|
|
|
TEST_F(Kernel, CatInputTypesPromotion) {
|
|
{
|
|
// Test that we properly promote input types for aten::cat
|
|
|
|
const auto graph_string = R"IR(
|
|
graph(%a : Float(5, 3, 2, strides=[6, 2, 1], device=cpu),
|
|
%b : Float(5, 7, 2, strides=[14, 2, 1], device=cpu),
|
|
%c : Double(5, 9, 2, strides=[18, 2, 1], device=cpu)):
|
|
%dim : int = prim::Constant[value=1]()
|
|
%inputs : Tensor[] = prim::ListConstruct(%a, %b, %c)
|
|
%r : Double(5, 19, 2, strides=[38, 2, 1]) = aten::cat(%inputs, %dim)
|
|
return (%r))IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
auto a = at::rand({5, 3, 2}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto b = at::rand({5, 7, 2}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto c = at::rand({5, 9, 2}, TensorOptions(kCPU).dtype(at::kDouble));
|
|
auto ref = at::cat({a, b, c}, 1);
|
|
|
|
TensorExprKernel k(graph);
|
|
std::vector<at::Tensor> inputs = {a, b, c};
|
|
StmtPtr s = k.getCodeGenStmt();
|
|
|
|
std::ostringstream oss;
|
|
oss << *s;
|
|
|
|
// Check the IR we produced
|
|
const std::string& verification_pattern =
|
|
R"IR(
|
|
# CHECK: for
|
|
# CHECK-NEXT: for
|
|
# CHECK-NEXT: for
|
|
# CHECK-NEXT: aten_cat)IR";
|
|
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
|
|
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
auto o = stack[0].toTensor();
|
|
|
|
// Check sizes
|
|
CHECK_EQ(o.sizes().size(), ref.sizes().size());
|
|
CHECK_EQ(o.dtype(), ref.dtype());
|
|
size_t num_el = 1;
|
|
for (size_t idx = 0; idx < ref.sizes().size(); idx++) {
|
|
CHECK_EQ(o.sizes()[idx], ref.sizes()[idx]);
|
|
num_el *= ref.sizes()[idx];
|
|
}
|
|
|
|
// Check the contents
|
|
for (size_t i = 0; i < num_el; i++) {
|
|
CHECK_EQ(((double*)o.data_ptr())[i], ((double*)ref.data_ptr())[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(Kernel, CatWoConditionals) {
|
|
getCatWoConditionals() = true;
|
|
const auto graph_string = R"IR(
|
|
graph(%a : Float(5, 3, 2, strides=[6, 2, 1], device=cpu),
|
|
%b : Float(5, 7, 2, strides=[14, 2, 1], device=cpu),
|
|
%c : Float(5, 9, 2, strides=[18, 2, 1], device=cpu)):
|
|
%dim : int = prim::Constant[value=1]()
|
|
%inputs : Tensor[] = prim::ListConstruct(%a, %b, %c)
|
|
%r : Float(5, 19, 2, strides=[38, 2, 1]) = aten::cat(%inputs, %dim)
|
|
return (%r))IR";
|
|
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
TensorExprKernel k(graph);
|
|
StmtPtr s = k.getCodeGenStmt();
|
|
std::ostringstream oss;
|
|
oss << *s;
|
|
|
|
const std::string& verification_pattern =
|
|
R"IR(
|
|
# CHECK: for
|
|
# CHECK-NEXT: for
|
|
# CHECK-NEXT: for
|
|
# CHECK-NEXT: aten_cat
|
|
# CHECK: for
|
|
# CHECK-NEXT: for
|
|
# CHECK-NEXT: for
|
|
# CHECK-NEXT: aten_cat
|
|
# CHECK: for
|
|
# CHECK-NEXT: for
|
|
# CHECK-NEXT: for
|
|
# CHECK-NEXT: aten_cat)IR";
|
|
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
|
|
|
|
auto a = at::rand({5, 3, 2}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto b = at::rand({5, 7, 2}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto c = at::rand({5, 9, 2}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto ref = at::cat({a, b, c}, 1);
|
|
|
|
std::vector<at::Tensor> inputs = {a, b, c};
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
auto o = stack[0].toTensor();
|
|
|
|
// Check sizes
|
|
CHECK_EQ(o.sizes().size(), ref.sizes().size());
|
|
CHECK_EQ(o.dtype(), ref.dtype());
|
|
size_t num_el = 1;
|
|
for (size_t idx = 0; idx < ref.sizes().size(); idx++) {
|
|
CHECK_EQ(o.sizes()[idx], ref.sizes()[idx]);
|
|
num_el *= ref.sizes()[idx];
|
|
}
|
|
|
|
// Check the contents
|
|
for (size_t i = 0; i < num_el; i++) {
|
|
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
|
|
}
|
|
getCatWoConditionals() = false;
|
|
}
|
|
|
|
TEST_F(Kernel, OptimizeConditionals) {
|
|
bool old_cat_wo_conditionals = getCatWoConditionals();
|
|
bool old_opt_conditionals = getOptConditionals();
|
|
getCatWoConditionals() = false;
|
|
getOptConditionals() = true;
|
|
const auto graph_string = R"IR(
|
|
graph(%a : Float(5, 3, strides=[3, 1], device=cpu),
|
|
%b : Float(5, 7, strides=[7, 1], device=cpu),
|
|
%c : Float(5, 9, strides=[9, 1], device=cpu)):
|
|
%dim : int = prim::Constant[value=1]()
|
|
%inputs : Tensor[] = prim::ListConstruct(%a, %b, %c)
|
|
%r : Float(5, 19, strides=[19, 1]) = aten::cat(%inputs, %dim)
|
|
%t : Float(5, 19, strides=[19, 1]) = aten::relu(%r)
|
|
return (%t))IR";
|
|
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
TensorExprKernel k(graph);
|
|
StmtPtr s = k.getCodeGenStmt();
|
|
std::ostringstream oss;
|
|
oss << *s;
|
|
|
|
const std::string& verification_pattern =
|
|
R"IR(
|
|
# CHECK: for
|
|
# CHECK-NEXT: for
|
|
# CHECK-NEXT: aten_relu
|
|
# CHECK: for
|
|
# CHECK-NEXT: aten_relu
|
|
# CHECK: for
|
|
# CHECK-NEXT: aten_relu
|
|
# CHECK-NOT: Allocate
|
|
# CHECK-NOT: Free)IR";
|
|
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
|
|
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
|
|
auto b = at::rand({5, 7}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
|
|
auto c = at::rand({5, 9}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto ref = at::relu(at::cat({a, b, c}, 1));
|
|
|
|
std::vector<at::Tensor> inputs = {a, b, c};
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
auto o = stack[0].toTensor();
|
|
|
|
// Check sizes
|
|
CHECK_EQ(o.sizes().size(), ref.sizes().size());
|
|
CHECK_EQ(o.dtype(), ref.dtype());
|
|
size_t num_el = 1;
|
|
for (size_t idx = 0; idx < ref.sizes().size(); idx++) {
|
|
CHECK_EQ(o.sizes()[idx], ref.sizes()[idx]);
|
|
num_el *= ref.sizes()[idx];
|
|
}
|
|
|
|
// Check the contents
|
|
for (size_t i = 0; i < num_el; i++) {
|
|
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
|
|
}
|
|
getOptConditionals() = old_opt_conditionals;
|
|
getCatWoConditionals() = old_cat_wo_conditionals;
|
|
}
|
|
|
|
namespace {
|
|
|
|
std::string dtypeConstant(ScalarType scalar_type) {
|
|
if (scalar_type == ScalarType::Undefined) {
|
|
return "None = prim::Constant()";
|
|
} else {
|
|
TemplateEnv env_dtype;
|
|
env_dtype.d("scalar_type", static_cast<int>(scalar_type));
|
|
return format("int = prim::Constant[value=${scalar_type}]()", env_dtype);
|
|
}
|
|
}
|
|
|
|
at::Tensor iotaTensor(IntArrayRef sizes, const at::TensorOptions& options) {
|
|
int64_t numel = std::accumulate(
|
|
sizes.begin(),
|
|
sizes.end(),
|
|
1,
|
|
// NOLINTNEXTLINE(modernize-use-transparent-functors)
|
|
std::multiplies<int64_t>());
|
|
std::vector<float> values(numel);
|
|
std::iota(values.begin(), values.end(), 0);
|
|
auto a = at::tensor(values, options);
|
|
return a.reshape(sizes);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
TEST_F(Kernel, SumAllAxes) {
|
|
// Test lowering of sum on all axes.
|
|
const auto graph_template = R"IR(
|
|
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu)):
|
|
%1 : ${dtype}
|
|
%2 : ${out_dtype}(requires_grad=0, device=cpu) = aten::sum(%0, %1)
|
|
return (%2))IR";
|
|
auto a = iotaTensor({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
|
|
for (auto scalar_type : {ScalarType::Undefined, ScalarType::Double}) {
|
|
TemplateEnv env;
|
|
env.s("dtype", dtypeConstant(scalar_type));
|
|
if (scalar_type == ScalarType::Undefined) {
|
|
env.s("out_dtype", "Float");
|
|
} else {
|
|
env.s("out_dtype", "Double");
|
|
}
|
|
const auto graph_string = format(graph_template, env);
|
|
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
auto o = at::empty({}, TensorOptions(kCPU));
|
|
c10::optional<c10::ScalarType> dtype;
|
|
if (scalar_type != ScalarType::Undefined) {
|
|
dtype = static_cast<c10::ScalarType>(scalar_type);
|
|
}
|
|
auto ref = a.sum(/*dtype=*/dtype);
|
|
TensorExprKernel k(graph);
|
|
std::vector<at::Tensor> inputs = {a};
|
|
StmtPtr s = k.getCodeGenStmt();
|
|
|
|
std::ostringstream oss;
|
|
oss << *s;
|
|
|
|
// Check the IR we produced
|
|
const std::string& verification_pattern =
|
|
R"IR(
|
|
# CHECK: for
|
|
# CHECK-NEXT: for)IR";
|
|
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
|
|
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
o = stack[0].toTensor();
|
|
ASSERT_EQ(o.sizes(), ref.sizes());
|
|
ASSERT_EQ(o.dtype(), ref.dtype());
|
|
ASSERT_TRUE(at::allclose(o, ref));
|
|
}
|
|
}
|
|
|
|
std::string li_to_str(at::ArrayRef<int64_t> li) {
|
|
std::stringstream out;
|
|
bool first = true;
|
|
for (auto elem : li) {
|
|
if (!first) {
|
|
out << ", ";
|
|
}
|
|
out << elem;
|
|
first = false;
|
|
}
|
|
return out.str();
|
|
}
|
|
|
|
TEST_F(Kernel, SumOneAxis) {
|
|
// Test lowering of sum on one axis.
|
|
const auto graph_template = R"IR(
|
|
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu)):
|
|
%1 : int[] = prim::Constant[value=[${dim}]]()
|
|
%2 : bool = prim::Constant[value=${keepdim}]()
|
|
%3 : ${dtype}
|
|
%4 : ${out_dtype}(${size}, strides=[${strides}], device=cpu) = aten::sum(%0, %1, %2, %3)
|
|
return (%4))IR";
|
|
auto a = iotaTensor({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
|
|
for (int dim = -a.dim(); dim < a.dim(); ++dim) {
|
|
for (bool keepdim : {false, true}) {
|
|
for (auto scalar_type : {ScalarType::Undefined, ScalarType::Double}) {
|
|
TemplateEnv env;
|
|
env.d("dim", dim);
|
|
env.d("keepdim", keepdim);
|
|
env.s("dtype", dtypeConstant(scalar_type));
|
|
c10::optional<c10::ScalarType> dtype;
|
|
if (scalar_type != ScalarType::Undefined) {
|
|
dtype = static_cast<c10::ScalarType>(scalar_type);
|
|
}
|
|
auto ref = a.sum({dim}, /*keepdim=*/keepdim, /*dtype=*/dtype);
|
|
if (scalar_type == ScalarType::Undefined) {
|
|
env.s("out_dtype", "Float");
|
|
} else {
|
|
env.s("out_dtype", "Double");
|
|
}
|
|
env.s("size", li_to_str(ref.sizes()));
|
|
env.s("strides", li_to_str(ref.strides()));
|
|
const auto graph_string = format(graph_template, env);
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
auto o = at::empty({}, TensorOptions(kCPU));
|
|
TensorExprKernel k(graph);
|
|
std::vector<at::Tensor> inputs = {a};
|
|
StmtPtr s = k.getCodeGenStmt();
|
|
|
|
std::ostringstream oss;
|
|
oss << *s;
|
|
|
|
// Check the IR we produced
|
|
const std::string& verification_pattern =
|
|
R"IR(
|
|
# CHECK: for (int v = 0; v <
|
|
# CHECK-NEXT: sum
|
|
# CHECK-NEXT: for (int v_1 = 0; v_1 <
|
|
# CHECK-NEXT: sum)IR";
|
|
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
|
|
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
o = stack[0].toTensor();
|
|
ASSERT_EQ(o.sizes(), ref.sizes());
|
|
ASSERT_EQ(o.dtype(), ref.dtype());
|
|
ASSERT_TRUE(at::allclose(o, ref));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(Kernel, SumMultipleAxes) {
|
|
// Test lowering of sum on multiple axes.
|
|
const auto graph_template = R"IR(
|
|
graph(%0 : Float(2, 3, 2, 3, strides=[18, 6, 3, 1], requires_grad=0, device=cpu)):
|
|
%1 : int = prim::Constant[value=${dim1}]()
|
|
%2 : int = prim::Constant[value=${dim2}]()
|
|
%3 : int[] = prim::ListConstruct(%1, %2)
|
|
%4 : bool = prim::Constant[value=${keepdim}]()
|
|
%5 : ${dtype}
|
|
%6 : Float(${size}, strides=[${strides}], requires_grad=0, device=cpu) = aten::sum(%0, %3, %4, %5)
|
|
return (%6))IR";
|
|
auto a = iotaTensor({2, 3, 2, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
|
|
// Only iterate over positive values of axes to keep the running time
|
|
// reasonable, since the number of pairs is quadratic.
|
|
for (int dim1 = 0; dim1 < a.dim(); ++dim1) {
|
|
for (int dim2 = dim1 + 1; dim2 < a.dim(); ++dim2) {
|
|
for (bool keepdim : {false, true}) {
|
|
TemplateEnv env;
|
|
env.d("dim1", dim1);
|
|
env.d("dim2", dim2);
|
|
env.d("keepdim", keepdim);
|
|
env.s("dtype", dtypeConstant(ScalarType::Undefined));
|
|
auto o = at::empty({}, TensorOptions(kCPU));
|
|
auto ref = a.sum(IntArrayRef{dim1, dim2}, /*keepdim=*/keepdim);
|
|
|
|
env.s("size", li_to_str(ref.sizes()));
|
|
env.s("strides", li_to_str(ref.strides()));
|
|
|
|
const auto graph_string = format(graph_template, env);
|
|
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
TensorExprKernel k(graph);
|
|
std::vector<at::Tensor> inputs = {a};
|
|
StmtPtr s = k.getCodeGenStmt();
|
|
|
|
std::ostringstream oss;
|
|
oss << *s;
|
|
|
|
// Check the IR we produced
|
|
const std::string& verification_pattern =
|
|
R"IR(
|
|
# CHECK: int v = 0
|
|
# CHECK: int v_1 = 0
|
|
# CHECK: int v_2 = 0
|
|
# CHECK: int v_3 = 0
|
|
# CHECK: sum)IR";
|
|
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
|
|
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
o = stack[0].toTensor();
|
|
ASSERT_EQ(o.sizes(), ref.sizes());
|
|
ASSERT_EQ(o.dtype(), ref.dtype());
|
|
ASSERT_TRUE(at::allclose(o, ref));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// This test and the following ones testing Softmax only tests with dim set
|
|
// to one of the valid input dimensions. It does not test with dim=None
|
|
// because that is supposed to be deprecated.
|
|
TEST_F(Kernel, Softmax2D) {
|
|
const auto graph_template = R"IR(
|
|
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu)):
|
|
%1 : int = prim::Constant[value=${dim}]()
|
|
%2 : int = prim::Constant[value=7]()
|
|
%3 : Float(${size}, strides=[${strides}]) = aten::${op}(%0, %1, %2)
|
|
return (%3))IR";
|
|
|
|
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
|
|
const std::string& verification_template =
|
|
R"IR(
|
|
# CHECK: for (int i${other_dim} = 0; i${other_dim} < ${other_dim_size}
|
|
# CHECK: for (int i${softmax_dim} = 0; i${softmax_dim} < ${softmax_dim_size}
|
|
# CHECK-NEXT: aten_softmax_max
|
|
# CHECK: for (int i${other_dim}_1 = 0; i${other_dim}_1 < ${other_dim_size}
|
|
# CHECK: for (int i${softmax_dim}_1 = 0; i${softmax_dim}_1 < ${softmax_dim_size}
|
|
# CHECK-NEXT: aten_softmax_sum
|
|
# CHECK: for (int i0_2 = 0; i0_2 < 5
|
|
# CHECK-NEXT: for (int i1_2 = 0; i1_2 < 3
|
|
# CHECK-NEXT: aten_softmax)IR";
|
|
|
|
for (auto log_softmax : {false, true}) {
|
|
for (int softmax_dim = 0; softmax_dim < a.dim(); ++softmax_dim) {
|
|
auto softmax_dim_size = a.sizes()[softmax_dim];
|
|
auto other_dim = (softmax_dim + 1) % a.dim();
|
|
auto ref =
|
|
log_softmax ? a.log_softmax(softmax_dim) : a.softmax(softmax_dim);
|
|
TemplateEnv env;
|
|
env.d("dim", softmax_dim);
|
|
env.s("op", log_softmax ? "log_softmax" : "softmax");
|
|
env.s("size", li_to_str(ref.sizes()));
|
|
env.s("strides", li_to_str(ref.strides()));
|
|
|
|
const auto graph_string = format(graph_template, env);
|
|
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
TensorExprKernel k(graph);
|
|
std::vector<at::Tensor> inputs = {a};
|
|
StmtPtr s = k.getCodeGenStmt();
|
|
|
|
std::ostringstream oss;
|
|
oss << *s;
|
|
|
|
TemplateEnv ver_env;
|
|
ver_env.d("other_dim", other_dim);
|
|
ver_env.d("other_dim_size", a.sizes()[other_dim]);
|
|
ver_env.d("softmax_dim", softmax_dim);
|
|
ver_env.d("softmax_dim_size", softmax_dim_size);
|
|
const auto verification_pattern = format(verification_template, ver_env);
|
|
|
|
// verication sting temporarily disabled until
|
|
// inlining of exp() is benchmarked and determined
|
|
// torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
|
|
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
auto output = stack[0].toTensor();
|
|
ASSERT_EQ(output.sizes(), ref.sizes());
|
|
ASSERT_TRUE(at::allclose(output, ref));
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(Kernel, Softmax3D) {
|
|
const auto graph_template = R"IR(
|
|
graph(%0 : Float(3, 4, 5, strides=[20, 5, 1], device=cpu)):
|
|
%1 : int = prim::Constant[value=${dim}]()
|
|
%2 : int = prim::Constant[value=7]()
|
|
%3 : Float(${size}, strides=[${strides}]) = aten::${op}(%0, %1, %2)
|
|
return (%3))IR";
|
|
|
|
auto a = at::rand({3, 4, 5}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
|
|
const std::string& verification_template =
|
|
R"IR(
|
|
# CHECK: for (int i${dim1} = 0; i${dim1} < ${dim1_size}
|
|
# CHECK-NEXT: for (int i${dim2} = 0; i${dim2} < ${dim2_size}
|
|
# CHECK: for (int i${softmax_dim} = 0; i${softmax_dim} < ${softmax_dim_size}
|
|
# CHECK-NEXT: aten_softmax_max
|
|
# CHECK: for (int i${dim1}_1 = 0; i${dim1}_1 < ${dim1_size}
|
|
# CHECK-NEXT: for (int i${dim2}_1 = 0; i${dim2}_1 < ${dim2_size}
|
|
# CHECK: for (int i${softmax_dim}_1 = 0; i${softmax_dim}_1 < ${softmax_dim_size}
|
|
# CHECK-NEXT: aten_softmax_sum
|
|
# CHECK: for (int i0_2 = 0; i0_2 < 3
|
|
# CHECK-NEXT: for (int i1_2 = 0; i1_2 < 4
|
|
# CHECK-NEXT: for (int i2_2 = 0; i2_2 < 5
|
|
# CHECK-NEXT: aten_softmax)IR";
|
|
|
|
for (auto log_softmax : {false, true}) {
|
|
for (int softmax_dim = 0; softmax_dim < a.dim(); ++softmax_dim) {
|
|
auto softmax_dim_size = a.sizes()[softmax_dim];
|
|
std::vector<int> other_dims;
|
|
for (int i = 0; i < a.dim(); ++i) {
|
|
if (i != softmax_dim) {
|
|
other_dims.push_back(i);
|
|
}
|
|
}
|
|
auto ref =
|
|
log_softmax ? a.log_softmax(softmax_dim) : a.softmax(softmax_dim);
|
|
|
|
TemplateEnv env;
|
|
env.d("dim", softmax_dim);
|
|
env.s("op", log_softmax ? "log_softmax" : "softmax");
|
|
env.s("size", li_to_str(ref.sizes()));
|
|
env.s("strides", li_to_str(ref.strides()));
|
|
|
|
const auto graph_string = format(graph_template, env);
|
|
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
TensorExprKernel k(graph);
|
|
std::vector<at::Tensor> inputs = {a};
|
|
StmtPtr s = k.getCodeGenStmt();
|
|
|
|
std::ostringstream oss;
|
|
oss << *s;
|
|
|
|
TemplateEnv ver_env;
|
|
ver_env.d("dim1", other_dims[0]);
|
|
ver_env.d("dim1_size", a.sizes()[other_dims[0]]);
|
|
ver_env.d("dim2", other_dims[1]);
|
|
ver_env.d("dim2_size", a.sizes()[other_dims[1]]);
|
|
ver_env.d("softmax_dim", softmax_dim);
|
|
ver_env.d("softmax_dim_size", softmax_dim_size);
|
|
const auto verification_pattern = format(verification_template, ver_env);
|
|
|
|
// verication sting temporarily disabled until
|
|
// inlining of exp() is benchmarked and determined
|
|
// torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
|
|
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
auto output = stack[0].toTensor();
|
|
|
|
ASSERT_EQ(output.sizes(), ref.sizes());
|
|
ASSERT_TRUE(at::allclose(output, ref));
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(Kernel, Softmax4D) {
|
|
const auto graph_template = R"IR(
|
|
graph(%0 : Float(2, 3, 2, 3, strides=[18, 6, 3, 1], device=cpu)):
|
|
%1 : int = prim::Constant[value=${dim}]()
|
|
%2 : int = prim::Constant[value=7]()
|
|
%3 : Float(${size}, strides=[${strides}]) = aten::${op}(%0, %1, %2)
|
|
return (%3))IR";
|
|
|
|
auto a = at::rand({2, 3, 2, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
|
|
const std::string& verification_template =
|
|
R"IR(
|
|
# CHECK: for (int i${dim1} = 0; i${dim1} < ${dim1_size}
|
|
# CHECK-NEXT: for (int i${dim2} = 0; i${dim2} < ${dim2_size}
|
|
# CHECK-NEXT: for (int i${dim3} = 0; i${dim3} < ${dim3_size}
|
|
# CHECK: for (int i${softmax_dim} = 0; i${softmax_dim} < ${softmax_dim_size}
|
|
# CHECK-NEXT: aten_softmax_max
|
|
# CHECK: for (int i${dim1}_1 = 0; i${dim1}_1 < ${dim1_size}
|
|
# CHECK-NEXT: for (int i${dim2}_1 = 0; i${dim2}_1 < ${dim2_size}
|
|
# CHECK-NEXT: for (int i${dim3}_1 = 0; i${dim3}_1 < ${dim3_size}
|
|
# CHECK: for (int i${softmax_dim}_1 = 0; i${softmax_dim}_1 < ${softmax_dim_size}
|
|
# CHECK-NEXT: aten_softmax_sum
|
|
# CHECK: for (int i0_2 = 0; i0_2 < 2
|
|
# CHECK-NEXT: for (int i1_2 = 0; i1_2 < 3
|
|
# CHECK-NEXT: for (int i2_2 = 0; i2_2 < 2
|
|
# CHECK-NEXT: for (int i3_2 = 0; i3_2 < 3
|
|
# CHECK-NEXT: aten_softmax)IR";
|
|
|
|
for (auto log_softmax : {false, true}) {
|
|
for (int softmax_dim = 0; softmax_dim < a.dim(); ++softmax_dim) {
|
|
auto softmax_dim_size = a.sizes()[softmax_dim];
|
|
std::vector<int> other_dims;
|
|
for (int i = 0; i < a.dim(); ++i) {
|
|
if (i != softmax_dim) {
|
|
other_dims.push_back(i);
|
|
}
|
|
}
|
|
auto ref =
|
|
log_softmax ? a.log_softmax(softmax_dim) : a.softmax(softmax_dim);
|
|
|
|
TemplateEnv env;
|
|
env.d("dim", softmax_dim);
|
|
env.s("op", log_softmax ? "log_softmax" : "softmax");
|
|
env.s("size", li_to_str(ref.sizes()));
|
|
env.s("strides", li_to_str(ref.strides()));
|
|
|
|
const auto graph_string = format(graph_template, env);
|
|
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
TensorExprKernel k(graph);
|
|
std::vector<at::Tensor> inputs = {a};
|
|
StmtPtr s = k.getCodeGenStmt();
|
|
|
|
std::ostringstream oss;
|
|
oss << *s;
|
|
|
|
TemplateEnv ver_env;
|
|
ver_env.d("dim1", other_dims[0]);
|
|
ver_env.d("dim1_size", a.sizes()[other_dims[0]]);
|
|
ver_env.d("dim2", other_dims[1]);
|
|
ver_env.d("dim2_size", a.sizes()[other_dims[1]]);
|
|
ver_env.d("dim3", other_dims[2]);
|
|
ver_env.d("dim3_size", a.sizes()[other_dims[2]]);
|
|
ver_env.d("softmax_dim", softmax_dim);
|
|
ver_env.d("softmax_dim_size", softmax_dim_size);
|
|
const auto verification_pattern = format(verification_template, ver_env);
|
|
|
|
// verication sting temporarily disabled until
|
|
// inlining of exp() is benchmarked and determined
|
|
// torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
|
|
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
auto output = stack[0].toTensor();
|
|
ASSERT_EQ(output.sizes(), ref.sizes());
|
|
ASSERT_TRUE(at::allclose(output, ref));
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(Kernel, InlineProducerIntoReduction) {
|
|
// Inline producer (mul) into reduction (sum).
|
|
const auto graph_string = R"IR(
|
|
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
|
|
%1 : Float(5, 3, strides=[3, 1], device=cpu)):
|
|
%2 : Float(5, 3, strides=[3, 1], device=cpu) = aten::mul(%0, %1)
|
|
%3 : int = prim::Constant[value=7]()
|
|
%4 : Double(device=cpu) = aten::sum(%2, %3)
|
|
return (%4))IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
TensorExprKernel k(graph);
|
|
StmtPtr s = k.getCodeGenStmt();
|
|
std::ostringstream oss;
|
|
oss << *s;
|
|
|
|
// Check the IR we produced.
|
|
// We should have only one loop in the end.
|
|
const std::string& verification_pattern =
|
|
R"IR(
|
|
# CHECK: for (int v = 0; v < 5;
|
|
# CHECK-NEXT: for (int v_1 = 0; v_1 < 3;
|
|
# CHECK-NEXT: sum
|
|
# CHECK-NOT: for)IR";
|
|
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
|
|
|
|
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto b = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
std::vector<at::Tensor> inputs = {a, b};
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
auto o = stack[0].toTensor();
|
|
auto ref = (a * b).sum(at::kDouble);
|
|
ASSERT_TRUE(at::allclose(o, ref));
|
|
}
|
|
|
|
TEST_F(Kernel, InlineReductionIntoConsumer) {
|
|
// Inline producer (mul %2) into reduction (sum %4) but DO NOT
|
|
// inline the reduction into consumer (mul %4).
|
|
const auto graph_string = R"IR(
|
|
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
|
|
%1 : Float(5, 3, strides=[3, 1], device=cpu)):
|
|
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
|
|
%3 : int = prim::Constant[value=6]()
|
|
%4 : Float(device=cpu) = aten::sum(%2, %3)
|
|
%5 : Float(5, 3, strides=[3, 1], device=cpu) = aten::mul(%2, %4)
|
|
return (%5))IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
TensorExprKernel k(graph);
|
|
StmtPtr s = k.getCodeGenStmt();
|
|
std::ostringstream oss;
|
|
oss << *s;
|
|
|
|
// Check the IR we produced.
|
|
// We should have two loops in the end.
|
|
const std::string& verification_pattern =
|
|
R"IR(
|
|
# CHECK: for (int v = 0; v < 5;
|
|
# CHECK-NEXT: for (int v_1 = 0; v_1 < 3;
|
|
# CHECK-NEXT: sum
|
|
# CHECK: for (int v_2 = 0; v_2 < 5;
|
|
# CHECK-NEXT: for (int v_3 = 0; v_3 < 3;
|
|
# CHECK-NEXT: aten_mul
|
|
# CHECK-NOT: for)IR";
|
|
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
|
|
|
|
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto b = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
std::vector<at::Tensor> inputs = {a, b};
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
auto o = stack[0].toTensor();
|
|
auto ref = (a * b).sum(at::kFloat) * (a * b);
|
|
ASSERT_TRUE(at::allclose(o, ref));
|
|
}
|
|
|
|
TEST_F(Kernel, SanitizeNames_CUDA) {
|
|
const auto graph_string = R"IR(
|
|
graph(%0 : Float(5, 3, strides=[3, 1], device=cuda:0),
|
|
%1 : Float(5, 3, strides=[3, 1], device=cuda:0)):
|
|
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
|
|
%4 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
|
|
return (%4))IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
graph->inputs().at(0)->setDebugName("aten::add:");
|
|
graph->inputs().at(1)->setDebugName("aten::add_");
|
|
TensorExprKernel k(graph);
|
|
auto a = at::rand({5, 3}, TensorOptions(kCUDA).dtype(at::kFloat));
|
|
auto b = at::rand({5, 3}, TensorOptions(kCUDA).dtype(at::kFloat));
|
|
auto ref = a * (a * b);
|
|
std::vector<at::Tensor> inputs = {a, b};
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
auto o = stack[0].toTensor();
|
|
ASSERT_TRUE(at::allclose(o, ref));
|
|
}
|
|
|
|
TEST_F(Kernel, ConstantTensors) {
|
|
const auto graph_string = R"IR(
|
|
graph(%x : Float(16, 16, strides=[16, 1], device=cpu)):
|
|
%none : NoneType = prim::Constant()
|
|
%size : int = prim::Constant[value=16]()
|
|
%sizes : int[] = prim::ListConstruct(%size, %size)
|
|
%y : Float(16, 16, strides=[16, 1], device=cpu) = aten::ones(%sizes, %none, %none, %none, %none)
|
|
%z : Float(16, 16, strides=[16, 1], device=cpu) = aten::mul(%x, %y)
|
|
return (%z))IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
// IRParser doesn't support tensor constants, so we insert a call to
|
|
// aten::ones and then const-prop it
|
|
ConstantPropagation(graph);
|
|
|
|
TensorExprKernel k(graph);
|
|
|
|
auto x = at::rand({16, 16}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
std::vector<at::Tensor> inputs = {x};
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
auto o = stack[0].toTensor();
|
|
auto y = at::ones({16, 16}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto ref = x * y;
|
|
ASSERT_TRUE(at::allclose(o, ref));
|
|
}
|
|
|
|
TEST_F(Kernel, ConstantTensorsNonContiguous) {
|
|
const auto graph_string = R"IR(
|
|
graph(%x : Float(16, 16, strides=[16, 1], device=cpu)):
|
|
%none : NoneType = prim::Constant()
|
|
%dtype : int = prim::Constant[value=6]()
|
|
%c0 : int = prim::Constant[value=0]()
|
|
%c256 : int = prim::Constant[value=256]()
|
|
%c16 : int = prim::Constant[value=16]()
|
|
%y_flat : Tensor = aten::arange(%c0, %c256, %dtype, %none, %none, %none)
|
|
%sizes : int[] = prim::ListConstruct(%c16, %c16)
|
|
%y_t : Tensor = aten::view(%y_flat, %sizes)
|
|
%y : Tensor = aten::t(%y_t)
|
|
%z : Float(16, 16, strides=[16, 1], device=cpu) = aten::mul(%x, %y)
|
|
return (%z))IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
// IRParser doesn't support tensor constants, so we generate several aten
|
|
// calls to produce non-contiguos constant tensor and then const-prop it
|
|
ConstantPropagation(graph);
|
|
|
|
TensorExprKernel k(graph);
|
|
|
|
auto x = at::rand({16, 16}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
std::vector<at::Tensor> inputs = {x};
|
|
std::vector<IValue> stack = fmap<IValue>(inputs);
|
|
k.run(stack);
|
|
auto o = stack[0].toTensor();
|
|
auto y = at::arange(0, 256, TensorOptions(kCPU).dtype(at::kFloat))
|
|
.view({16, 16})
|
|
.t();
|
|
auto ref = x * y;
|
|
ASSERT_TRUE(at::allclose(o, ref));
|
|
}
|
|
|
|
TEST_F(Kernel, RunFast) {
|
|
#ifdef TORCH_ENABLE_LLVM
|
|
// TODO: Implement call_raw in IREval and remove the ifdef
|
|
|
|
const auto graph_string = R"IR(
|
|
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
|
|
%1 : Float(5, 3, strides=[1, 5], device=cpu)):
|
|
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
|
|
%3 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
|
|
return (%3))IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto b =
|
|
at::rand({3, 5}, TensorOptions(kCPU).dtype(at::kFloat)).transpose(0, 1);
|
|
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
|
|
auto ref = a * (a * b);
|
|
TensorExprKernel k(graph);
|
|
|
|
k.runFast({a.data_ptr(), b.data_ptr()}, {o.data_ptr()});
|
|
for (size_t i = 0; i < 5 * 3; i++) {
|
|
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
TEST_F(Kernel, CodegenInspection) {
|
|
#ifdef TORCH_ENABLE_LLVM
|
|
const auto graph_string = R"IR(
|
|
graph(%x : Float(16, 16, strides=[16, 1], device=cpu)):
|
|
%none : NoneType = prim::Constant()
|
|
%dtype : int = prim::Constant[value=6]()
|
|
%c0 : int = prim::Constant[value=0]()
|
|
%c256 : int = prim::Constant[value=256]()
|
|
%c16 : int = prim::Constant[value=16]()
|
|
%y_flat : Tensor = aten::arange(%c0, %c256, %dtype, %none, %none, %none)
|
|
%sizes : int[] = prim::ListConstruct(%c16, %c16)
|
|
%y_t : Tensor = aten::view(%y_flat, %sizes)
|
|
%y : Tensor = aten::t(%y_t)
|
|
%z : Float(16, 16, strides=[16, 1], device=cpu) = aten::mul(%x, %y)
|
|
return (%z))IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
// IRParser doesn't support tensor constants, so we generate several aten
|
|
// calls to produce non-contiguos constant tensor and then const-prop it
|
|
ConstantPropagation(graph);
|
|
|
|
TensorExprKernel k(graph);
|
|
|
|
// Check that we could retrieve generated assembly
|
|
auto asm_str = k.getCodeText("asm");
|
|
const std::string& asm_verification_pattern =
|
|
R"ASM(
|
|
# CHECK: .text
|
|
# CHECK: retq)ASM";
|
|
torch::jit::testing::FileCheck().run(asm_verification_pattern, asm_str);
|
|
|
|
// Check that we could retrieve info about codegen parameters
|
|
auto constants = k.getConstantDescriptors();
|
|
auto buf_args = k.getBufferArgs();
|
|
// Expected buf args: [input0, output0, constant0]
|
|
ASSERT_EQ(buf_args.size(), 3);
|
|
ASSERT_EQ(constants.size(), 1);
|
|
ASSERT_TRUE(
|
|
!buf_args[0].isVar() && !buf_args[1].isVar() && !buf_args[2].isVar());
|
|
#endif
|
|
}
|
|
|
|
Tensor lowerNanToNum(
|
|
const std::vector<ArgValue>& inputs,
|
|
const std::vector<ExprHandle>& outputShape,
|
|
const c10::optional<ScalarType>& outputType,
|
|
at::Device device) {
|
|
auto input_buf = c10::get<BufHandle>(inputs[0]);
|
|
auto e = Compute(
|
|
"custom_nan_to_num",
|
|
c10::fmap<DimArg>(outputShape),
|
|
[&](const std::vector<VarHandle>& axes) {
|
|
std::vector<ExprHandle> indices(axes.begin(), axes.end());
|
|
auto load = input_buf.load(indices);
|
|
return IfThenElse::make(Cast::make(kBool, isnan(load)), 0.0f, load);
|
|
});
|
|
return e;
|
|
}
|
|
|
|
TEST_F(Kernel, CustomLowering) {
|
|
const auto graph_string = R"IR(
|
|
graph(%x : Float(2, 2, strides=[2, 1], requires_grad=0, device=cpu)):
|
|
%none : NoneType = prim::Constant()
|
|
%y : Float(2, 2, strides=[2, 1], requires_grad=0, device=cpu) = aten::nan_to_num(%x, %none, %none, %none)
|
|
return (%y)
|
|
)IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(graph_string, &*graph);
|
|
|
|
std::unordered_map<c10::Symbol, NNCLoweringFunction> lowerings = {
|
|
{aten::nan_to_num, lowerNanToNum}};
|
|
TensorExprKernel k(graph, lowerings);
|
|
|
|
auto stmt = k.getCodeGenStmt();
|
|
std::ostringstream oss;
|
|
oss << *stmt;
|
|
|
|
// Check that our custom lowering is actually used
|
|
torch::jit::testing::FileCheck().check("custom_nan_to_num")->run(oss.str());
|
|
torch::jit::testing::FileCheck().check("isnan")->run(oss.str());
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|