mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/46804 As per our design in https://github.com/pytorch/pytorch/issues/44827, changign the API such that the user places modules on appropriate devices instead of having a `balance` and `devices` parameter that decides this. This design allows us to use RemoteModule in the future. ghstack-source-id: 116479842 Test Plan: waitforbuildbot Reviewed By: mrshenli Differential Revision: D24524219 fbshipit-source-id: 9973172c2bb7636572cdc37ce06bf8368638a463
339 lines
11 KiB
Python
339 lines
11 KiB
Python
# Copyright 2019 Kakao Brain
|
|
#
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
"""The Pipe interface."""
|
|
from collections import OrderedDict
|
|
from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Tuple, Union, cast
|
|
|
|
import torch
|
|
from torch import Tensor, nn
|
|
import torch.autograd
|
|
import torch.cuda
|
|
|
|
from . import microbatch
|
|
from .batchnorm import DeferredBatchNorm
|
|
from .pipeline import Pipeline
|
|
from .skip.layout import inspect_skip_layout
|
|
from .skip.skippable import verify_skippables
|
|
from .stream import AbstractStream, new_stream
|
|
|
|
__all__ = ["Pipe"]
|
|
|
|
|
|
Device = Union[torch.device, int, str]
|
|
Devices = Union[Iterable[Device], List[Device]]
|
|
|
|
Tensors = Tuple[Tensor, ...]
|
|
TensorOrTensors = Union[Tensor, Tensors]
|
|
|
|
if TYPE_CHECKING:
|
|
Module = nn.Module[TensorOrTensors]
|
|
NamedModules = OrderedDict[str, Module]
|
|
else:
|
|
Module = nn.Module
|
|
NamedModules = OrderedDict
|
|
|
|
|
|
def recommend_auto_balance(message: str) -> str:
|
|
"""Expands a message with recommendation to :mod:`torchpipe.balance`."""
|
|
return f"""{message}
|
|
|
|
If your model is still under development, its optimal balance would change
|
|
frequently. In this case, we highly recommend 'torch.distributed._pipeline.sync.balance' for
|
|
naive automatic balancing:
|
|
|
|
from torch.distributed._pipeline.sync import Pipe
|
|
from torch.distributed._pipeline.sync.balance import balance_by_time
|
|
|
|
partitions = torch.cuda.device_count()
|
|
sample = torch.empty(...)
|
|
balance = balance_by_time(partitions, model, sample)
|
|
|
|
model = Pipe(model, balance, ...)
|
|
"""
|
|
|
|
|
|
def verify_module(module: nn.Sequential) -> None:
|
|
if not isinstance(module, nn.Sequential):
|
|
raise TypeError("module must be nn.Sequential to be partitioned")
|
|
|
|
named_children = list(module.named_children())
|
|
if len(named_children) != len(module):
|
|
raise ValueError("module with duplicate children is not supported")
|
|
|
|
|
|
def _verify_splitting(
|
|
module: nn.Sequential, partitions: List[nn.Sequential], devices: List[torch.device]
|
|
) -> None:
|
|
num_parameters = len(list(module.parameters()))
|
|
num_child_parameters = sum(len(list(child.parameters())) for child in module.children())
|
|
if num_parameters == num_child_parameters:
|
|
return
|
|
|
|
for i in range(len(partitions)):
|
|
for j in range(i + 1, len(partitions)):
|
|
parti = partitions[i]
|
|
partj = partitions[j]
|
|
if devices[i] == devices[j]:
|
|
continue
|
|
for p in parti.parameters():
|
|
for q in partj.parameters():
|
|
if p is q:
|
|
raise ValueError("module with duplicate parameters on distinct devices is not supported")
|
|
|
|
|
|
class BalanceError(ValueError):
|
|
pass
|
|
|
|
|
|
def _retrieve_device(module: nn.Module) -> torch.device:
|
|
"""Validates all parameters in the Module have the same device and returns
|
|
the appropriate device.
|
|
|
|
Arguments:
|
|
An ``nn.Module`` to process.
|
|
|
|
Returns:
|
|
``torch.Device`` for the entire module.
|
|
|
|
Raises:
|
|
ValueError:
|
|
If devices for ``nn.Module`` parameters are not all same.
|
|
"""
|
|
|
|
device = None
|
|
for parameter in module.parameters():
|
|
if device is None:
|
|
device = parameter.device
|
|
elif device != parameter.device:
|
|
raise ValueError(
|
|
'nn.Module: {}, should have all parameters on a single device,'
|
|
' please use .to() to place the module on a single device'.format(module))
|
|
|
|
return device if device is not None else torch.device("cpu")
|
|
|
|
def _split_module(modules: nn.Sequential) -> Tuple[List[nn.Sequential], List[torch.device]]:
|
|
partitions = []
|
|
devices = []
|
|
for name, module in modules.named_children():
|
|
devices.append(_retrieve_device(module))
|
|
if isinstance(module, nn.Sequential):
|
|
partition = module
|
|
else:
|
|
partition = nn.Sequential(OrderedDict([(name, module)]))
|
|
partitions.append(partition)
|
|
|
|
partitions = cast(List[nn.Sequential], nn.ModuleList(partitions))
|
|
|
|
return partitions, devices
|
|
|
|
MOVING_DENIED = TypeError("denied to move parameters and buffers, " "because Pipe should manage device placement")
|
|
|
|
|
|
class Pipe(Module):
|
|
"""Wraps an arbitrary :class:`nn.Sequential <torch.nn.Sequential>` module
|
|
to train on Pipe_. If the module requires lots of memory, Pipe will be
|
|
very efficient.
|
|
::
|
|
|
|
model = nn.Sequential(a, b, c, d)
|
|
model = Pipe(model, chunks=8)
|
|
output = model(input)
|
|
|
|
.. _Pipe: https://arxiv.org/abs/2004.09910
|
|
|
|
Pipe combines pipeline parallelism with checkpointing to reduce peak
|
|
memory required to train while minimizing device under-utilization.
|
|
|
|
You should place all the modules on the appropriate devices before passing
|
|
them to this API and wrap them into an ``nn.Sequential`` module defining the
|
|
desired order of execution.
|
|
|
|
Args:
|
|
module (``torch.nn.Sequential``):
|
|
Sequential module to be parallelized using pipelining. Each module
|
|
in the sequence has to have all of its parameters on a single
|
|
device. Each module in the sequence has to either be an nn.Module
|
|
or ``nn.Sequential`` (to combine multiple sequential modules on a single
|
|
device)
|
|
|
|
Keyword Args:
|
|
chunks (int):
|
|
number of micro-batches (default: ``1``)
|
|
checkpoint (str):
|
|
when to enable checkpointing, one of ``'always'``,
|
|
``'except_last'``, or ``'never'`` (default: ``'except_last'``)
|
|
deferred_batch_norm (bool):
|
|
whether to use deferred BatchNorm moving statistics (default:
|
|
:data:`False`, see :ref:`Deferred Batch Normalization` for more
|
|
details)
|
|
|
|
Raises:
|
|
TypeError:
|
|
the module is not a :class:`nn.Sequential <torch.nn.Sequential>`.
|
|
ValueError:
|
|
invalid arguments
|
|
IndexError:
|
|
the number of devices is fewer than the number of partitions.
|
|
|
|
"""
|
|
|
|
#: The number of micro-batches.
|
|
chunks: int = 1
|
|
|
|
#: The checkpoint mode to determine when to enable checkpointing. It is one
|
|
#: of ``'always'``, ``'except_last'``, or ``'never'``.
|
|
checkpoint: str = "except_last"
|
|
|
|
def __init__(
|
|
self,
|
|
module: nn.Sequential,
|
|
chunks: int = chunks,
|
|
checkpoint: str = checkpoint,
|
|
deferred_batch_norm: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
chunks = int(chunks)
|
|
checkpoint = str(checkpoint)
|
|
|
|
if chunks <= 0:
|
|
raise ValueError("number of chunks must be positive integer")
|
|
if checkpoint not in ["always", "except_last", "never"]:
|
|
raise ValueError("checkpoint is not one of 'always', 'except_last', or 'never'")
|
|
|
|
verify_module(module)
|
|
|
|
# Verify if the underlying skippable modules satisfy integrity. The
|
|
# integrity can be verified before forward() because it is static.
|
|
verify_skippables(module)
|
|
|
|
self.chunks = chunks
|
|
self.checkpoint = checkpoint
|
|
|
|
if deferred_batch_norm:
|
|
module = DeferredBatchNorm.convert_deferred_batch_norm(module, chunks)
|
|
|
|
self.partitions, self.devices = _split_module(module)
|
|
_verify_splitting(module, self.partitions, self.devices)
|
|
|
|
self._copy_streams: List[List[AbstractStream]] = []
|
|
self._skip_layout = inspect_skip_layout(self.partitions)
|
|
|
|
# Separate CUDA streams for copy.
|
|
copy_streams = self._ensure_copy_streams()
|
|
|
|
# The micro-batch index where the checkpointing stops.
|
|
checkpoint_stop = {"always": self.chunks, "except_last": self.chunks - 1, "never": 0}[self.checkpoint]
|
|
|
|
self.pipeline = Pipeline(self.partitions, self.devices, copy_streams, self._skip_layout, checkpoint_stop)
|
|
|
|
def __len__(self) -> int:
|
|
"""Counts the length of the underlying sequential module."""
|
|
return sum(len(p) for p in self.partitions)
|
|
|
|
def __getitem__(self, index: int) -> nn.Module:
|
|
"""Gets a layer in the underlying sequential module."""
|
|
partitions = self.partitions
|
|
if index < 0:
|
|
partitions = partitions[::-1]
|
|
|
|
for partition in partitions:
|
|
try:
|
|
return partition[index]
|
|
except IndexError:
|
|
pass
|
|
|
|
shift = len(partition)
|
|
|
|
if index < 0:
|
|
index += shift
|
|
else:
|
|
index -= shift
|
|
|
|
raise IndexError
|
|
|
|
def __iter__(self) -> Iterable[nn.Module]:
|
|
"""Iterates over children of the underlying sequential module."""
|
|
for partition in self.partitions:
|
|
yield from partition
|
|
|
|
# Pipe should manage the device of each partition.
|
|
# Deny cuda(), cpu(), and to() with device, by TypeError.
|
|
def cuda(self, device: Optional[Device] = None) -> "Pipe":
|
|
raise MOVING_DENIED
|
|
|
|
def cpu(self) -> "Pipe":
|
|
raise MOVING_DENIED
|
|
|
|
def to(self, *args: Any, **kwargs: Any) -> "Pipe":
|
|
# Deny these usages:
|
|
#
|
|
# - to(device[, dtype, non_blocking])
|
|
# - to(tensor[, non_blocking])
|
|
#
|
|
# But allow this:
|
|
#
|
|
# - to(dtype[, non_blocking])
|
|
#
|
|
if "device" in kwargs or "tensor" in kwargs:
|
|
raise MOVING_DENIED
|
|
|
|
if args:
|
|
if isinstance(args[0], (torch.device, int, str)):
|
|
raise MOVING_DENIED
|
|
if torch.is_tensor(args[0]):
|
|
raise MOVING_DENIED
|
|
|
|
return super().to(*args, **kwargs)
|
|
|
|
def _ensure_copy_streams(self) -> List[List[AbstractStream]]:
|
|
"""Ensures that :class:`Pipe` caches CUDA streams for copy.
|
|
|
|
It's worth to cache CUDA streams although PyTorch already manages a
|
|
pool of pre-allocated CUDA streams, because it may reduce GPU memory
|
|
fragementation when the number of micro-batches is small.
|
|
|
|
"""
|
|
if not self._copy_streams:
|
|
for device in self.devices:
|
|
self._copy_streams.append([new_stream(device) for _ in range(self.chunks)])
|
|
|
|
return self._copy_streams
|
|
|
|
def forward(self, input: TensorOrTensors) -> TensorOrTensors: # type: ignore
|
|
""":class:`Pipe` is a fairly transparent module wrapper. It doesn't
|
|
modify the input and output signature of the underlying module. But
|
|
there's type restriction. Input and output have to be a
|
|
:class:`~torch.Tensor` or a tuple of tensors. This restriction is
|
|
applied at partition boundaries too.
|
|
|
|
Args:
|
|
input (torch.Tensor or tensors): input mini-batch
|
|
|
|
Returns:
|
|
tensor or tensors: output mini-batch
|
|
|
|
Raises:
|
|
TypeError: input is not a tensor or tensors.
|
|
|
|
"""
|
|
microbatch.check(input)
|
|
|
|
if not self.devices:
|
|
# Empty sequential module is not illegal.
|
|
return input
|
|
|
|
# Divide a mini-batch into micro-batches.
|
|
batches = microbatch.scatter(input, self.chunks)
|
|
|
|
# Run pipeline parallelism.
|
|
self.pipeline.run(batches)
|
|
|
|
# Merge the micro-batches into one mini-batch.
|
|
output = microbatch.gather(batches)
|
|
return output
|