mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
53 lines
1.6 KiB
Python
53 lines
1.6 KiB
Python
import torch.cuda
|
|
import torch.cuda.comm as comm
|
|
from torch.autograd import Function
|
|
|
|
|
|
class Broadcast(Function):
|
|
|
|
def __init__(self, target_gpus):
|
|
super(Broadcast, self).__init__()
|
|
self.target_gpus = target_gpus
|
|
|
|
def forward(self, input):
|
|
assert input.is_cuda, "Broadcast function not implemented for CPU tensors"
|
|
self.input_device = input.get_device()
|
|
return comm.broadcast(input, self.target_gpus)
|
|
|
|
def backward(self, *grad_output):
|
|
return comm.reduce_add(grad_output, self.input_device)
|
|
|
|
|
|
class Gather(Function):
|
|
|
|
def __init__(self, target_device, dim=0):
|
|
super(Gather, self).__init__()
|
|
self.target_device = target_device
|
|
self.dim = dim
|
|
|
|
def forward(self, *inputs):
|
|
assert all(map(lambda i: i.is_cuda, inputs))
|
|
self.input_gpus = tuple(map(lambda i: i.get_device(), inputs))
|
|
self.input_sizes = tuple(map(lambda i: i.size(self.dim), inputs))
|
|
return comm.gather(inputs, self.dim, self.target_device)
|
|
|
|
def backward(self, grad_output):
|
|
return comm.scatter(grad_output, self.input_gpus, self.input_sizes,
|
|
self.dim)
|
|
|
|
|
|
class Scatter(Function):
|
|
|
|
def __init__(self, target_gpus, chunk_sizes=None, dim=0):
|
|
super(Scatter, self).__init__()
|
|
self.target_gpus = target_gpus
|
|
self.chunk_sizes = chunk_sizes
|
|
self.dim = dim
|
|
|
|
def forward(self, input):
|
|
self.input_device = input.get_device() if input.is_cuda else -1
|
|
return comm.scatter(input, self.target_gpus, self.chunk_sizes, self.dim)
|
|
|
|
def backward(self, *grad_output):
|
|
return comm.gather(grad_output, self.dim, self.input_device)
|