pytorch/caffe2/python/layers/split.py
Xuehai Pan 8d45f555d7 [BE] [1/3] Rewrite super() calls in caffe2 and benchmarks (#94587)
Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied.

- #94587
- #94588
- #94592

Also, methods with only a `super()` call are removed:

```diff
class MyModule(nn.Module):
-   def __init__(self):
-       super().__init__()
-
    def forward(self, ...):
        ...
```

Some cases that change the semantics should be kept unchanged. E.g.:

f152a79be9/caffe2/python/net_printer.py (L184-L190)

f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94587
Approved by: https://github.com/ezyang
2023-02-11 18:19:48 +00:00

76 lines
2.2 KiB
Python

## @package split
# Module caffe2.python.layers.split
from caffe2.python import schema
from caffe2.python.layers.layers import (
ModelLayer,
)
class Split(ModelLayer):
def __init__(self, model, input_record, num_splits=1, axis=1,
name='split', split=None, **kwargs):
super().__init__(model, name, input_record, **kwargs)
self.axis = axis
# Assume that first dimension is batch, so actual axis in shape is
# axis - 1
axis -= 1
assert axis >= 0
assert isinstance(input_record, schema.Scalar),\
"Incorrect input type. Expected Scalar, but received: {0}".\
format(input_record)
input_shape = input_record.field_type().shape
assert len(input_shape) >= axis
if split is None:
assert input_shape[axis] % num_splits == 0
else:
num_splits = len(split)
assert input_shape[axis] == sum(split)
if split is None:
output_shape = list(input_shape)
output_shape[axis] = int(output_shape[axis] / num_splits)
else:
output_shape = []
for i in range(num_splits):
output_shape_i = list(input_shape)
output_shape_i[axis] = split[i]
output_shape.append(output_shape_i)
data_type = input_record.field_type().base
if split is None:
output_scalars = [
schema.Scalar(
(data_type, output_shape),
self.get_next_blob_reference('output_{}'.format(i)),
)
for i in range(num_splits)
]
else:
output_scalars = [
schema.Scalar(
(data_type, output_shape[i]),
self.get_next_blob_reference('output_{}'.format(i)),
)
for i in range(num_splits)
]
self.output_schema = schema.Tuple(*output_scalars)
self.split = split
def add_ops(self, net):
net.Split(
self.input_record.field_blobs(),
self.output_schema.field_blobs(),
split=self.split,
axis=self.axis,
)