mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary:
Let's make the documentation for `torch.sparse.sampled_addmm` searchable in the PyTorch documentation.
This PR shall be cherry-picked for the next 1.11 release.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72312
Reviewed By: davidberard98
Differential Revision: D34045230
Pulled By: cpuhrsch
fbshipit-source-id: c1b1dc907443284857f48c8ce1efab22c6701bbe
(cherry picked from commit 225929ecf2)
259 lines
9.9 KiB
Python
259 lines
9.9 KiB
Python
# The Tensor classes are added to this module by python_tensor.cpp
|
|
from typing import Optional, Tuple, List, Union
|
|
|
|
import torch
|
|
from torch._C import _add_docstr, _sparse # type: ignore[attr-defined]
|
|
from torch import Tensor
|
|
|
|
# A workaround to support both TorchScript and MyPy:
|
|
from typing import TYPE_CHECKING
|
|
if TYPE_CHECKING:
|
|
from torch.types import _dtype as DType
|
|
DimOrDims = Optional[Union[int, Tuple[int], List[int]]]
|
|
else:
|
|
# The JIT doesn't understand Union, nor torch.dtype here
|
|
DType = int
|
|
DimOrDims = Optional[Tuple[int]]
|
|
|
|
|
|
__all__ = [
|
|
'addmm',
|
|
'mm',
|
|
'sum',
|
|
'softmax',
|
|
'log_softmax',
|
|
]
|
|
|
|
|
|
addmm = _add_docstr(_sparse._sparse_addmm, r"""
|
|
sparse.addmm(mat, mat1, mat2, *, beta=1., alpha=1.) -> Tensor
|
|
|
|
This function does exact same thing as :func:`torch.addmm` in the forward,
|
|
except that it supports backward for sparse matrix :attr:`mat1`. :attr:`mat1`
|
|
need to have `sparse_dim = 2`. Note that the gradients of :attr:`mat1` is a
|
|
coalesced sparse tensor.
|
|
|
|
Args:
|
|
mat (Tensor): a dense matrix to be added
|
|
mat1 (Tensor): a sparse matrix to be multiplied
|
|
mat2 (Tensor): a dense matrix to be multiplied
|
|
beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`)
|
|
alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`)
|
|
""")
|
|
|
|
|
|
def mm(mat1: Tensor, mat2: Tensor) -> Tensor:
|
|
r"""
|
|
Performs a matrix multiplication of the sparse matrix :attr:`mat1`
|
|
and the (sparse or strided) matrix :attr:`mat2`. Similar to :func:`torch.mm`, If :attr:`mat1` is a
|
|
:math:`(n \times m)` tensor, :attr:`mat2` is a :math:`(m \times p)` tensor, out will be a
|
|
:math:`(n \times p)` tensor. :attr:`mat1` need to have `sparse_dim = 2`.
|
|
This function also supports backward for both matrices. Note that the gradients of
|
|
:attr:`mat1` is a coalesced sparse tensor.
|
|
|
|
Args:
|
|
mat1 (SparseTensor): the first sparse matrix to be multiplied
|
|
mat2 (Tensor): the second matrix to be multiplied, which could be sparse or dense
|
|
|
|
Shape:
|
|
The format of the output tensor of this function follows:
|
|
- sparse x sparse -> sparse
|
|
- sparse x dense -> dense
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(2, 3).to_sparse().requires_grad_(True)
|
|
>>> a
|
|
tensor(indices=tensor([[0, 0, 0, 1, 1, 1],
|
|
[0, 1, 2, 0, 1, 2]]),
|
|
values=tensor([ 1.5901, 0.0183, -0.6146, 1.8061, -0.0112, 0.6302]),
|
|
size=(2, 3), nnz=6, layout=torch.sparse_coo, requires_grad=True)
|
|
|
|
>>> b = torch.randn(3, 2, requires_grad=True)
|
|
>>> b
|
|
tensor([[-0.6479, 0.7874],
|
|
[-1.2056, 0.5641],
|
|
[-1.1716, -0.9923]], requires_grad=True)
|
|
|
|
>>> y = torch.sparse.mm(a, b)
|
|
>>> y
|
|
tensor([[-0.3323, 1.8723],
|
|
[-1.8951, 0.7904]], grad_fn=<SparseAddmmBackward>)
|
|
>>> y.sum().backward()
|
|
>>> a.grad
|
|
tensor(indices=tensor([[0, 0, 0, 1, 1, 1],
|
|
[0, 1, 2, 0, 1, 2]]),
|
|
values=tensor([ 0.1394, -0.6415, -2.1639, 0.1394, -0.6415, -2.1639]),
|
|
size=(2, 3), nnz=6, layout=torch.sparse_coo)
|
|
"""
|
|
if mat1.is_sparse and mat2.is_sparse:
|
|
return torch._sparse_sparse_matmul(mat1, mat2)
|
|
return torch._sparse_mm(mat1, mat2)
|
|
|
|
|
|
sampled_addmm = _add_docstr(_sparse.sparse_sampled_addmm, r"""
|
|
sparse.sampled_addmm(input, mat1, mat2, *, beta=1., alpha=1., out=None) -> Tensor
|
|
|
|
Performs a matrix multiplication of the dense matrices :attr:`mat1` and :attr:`mat2` at the locations
|
|
specified by the sparsity pattern of :attr:`input`. The matrix :attr:`input` is added to the final result.
|
|
|
|
Mathematically this performs the following operation:
|
|
|
|
.. math::
|
|
|
|
\text{out} = \alpha\ (\text{mat1} \mathbin{@} \text{mat2})*\text{spy}(\text{input}) + \beta\ \text{input}
|
|
|
|
where :math:`\text{spy}(\text{input})` is the sparsity pattern matrix of :attr:`input`, :attr:`alpha`
|
|
and :attr:`beta` are the scaling factors.
|
|
:math:`\text{spy}(\text{input})` has value 1 at the positions where :attr:`input` has non-zero values, and 0 elsewhere.
|
|
|
|
.. note::
|
|
:attr:`input` must be a sparse CSR tensor. :attr:`mat1` and :attr:`mat2` must be dense tensors.
|
|
This function is implemented only for tensors on CUDA devices.
|
|
|
|
Args:
|
|
input (Tensor): a sparse CSR matrix of shape `(m, n)` to be added and used to compute
|
|
the sampled matrix multiplication
|
|
mat1 (Tensor): a dense matrix of shape `(m, k)` to be multiplied
|
|
mat2 (Tensor): a dense matrix of shape `(k, n)` to be multiplied
|
|
|
|
Keyword args:
|
|
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
|
|
alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`)
|
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|
|
|
Examples::
|
|
|
|
>>> input = torch.eye(3, device='cuda').to_sparse_csr()
|
|
>>> mat1 = torch.randn(3, 5, device='cuda')
|
|
>>> mat2 = torch.randn(5, 3, device='cuda')
|
|
>>> torch.sparse.sampled_addmm(input, mat1, mat2)
|
|
tensor(crow_indices=tensor([0, 1, 2, 3]),
|
|
col_indices=tensor([0, 1, 2]),
|
|
values=tensor([ 0.2847, -0.7805, -0.1900]), device='cuda:0',
|
|
size=(3, 3), nnz=3, layout=torch.sparse_csr)
|
|
>>> torch.sparse.sampled_addmm(input, mat1, mat2).to_dense()
|
|
tensor([[ 0.2847, 0.0000, 0.0000],
|
|
[ 0.0000, -0.7805, 0.0000],
|
|
[ 0.0000, 0.0000, -0.1900]], device='cuda:0')
|
|
>>> torch.sparse.sampled_addmm(input, mat1, mat2, beta=0.5, alpha=0.5)
|
|
tensor(crow_indices=tensor([0, 1, 2, 3]),
|
|
col_indices=tensor([0, 1, 2]),
|
|
values=tensor([ 0.1423, -0.3903, -0.0950]), device='cuda:0',
|
|
size=(3, 3), nnz=3, layout=torch.sparse_csr)
|
|
""")
|
|
|
|
|
|
def sum(input: Tensor, dim: DimOrDims = None,
|
|
dtype: Optional[DType] = None) -> Tensor:
|
|
r"""
|
|
Returns the sum of each row of the sparse tensor :attr:`input` in the given
|
|
dimensions :attr:`dim`. If :attr:`dim` is a list of dimensions,
|
|
reduce over all of them. When sum over all ``sparse_dim``, this method
|
|
returns a dense tensor instead of a sparse tensor.
|
|
|
|
All summed :attr:`dim` are squeezed (see :func:`torch.squeeze`), resulting an output
|
|
tensor having :attr:`dim` fewer dimensions than :attr:`input`.
|
|
|
|
During backward, only gradients at ``nnz`` locations of :attr:`input`
|
|
will propagate back. Note that the gradients of :attr:`input` is coalesced.
|
|
|
|
Args:
|
|
input (Tensor): the input sparse tensor
|
|
dim (int or tuple of ints): a dimension or a list of dimensions to reduce. Default: reduce
|
|
over all dims.
|
|
dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor.
|
|
Default: dtype of :attr:`input`.
|
|
|
|
Example::
|
|
|
|
>>> nnz = 3
|
|
>>> dims = [5, 5, 2, 3]
|
|
>>> I = torch.cat([torch.randint(0, dims[0], size=(nnz,)),
|
|
torch.randint(0, dims[1], size=(nnz,))], 0).reshape(2, nnz)
|
|
>>> V = torch.randn(nnz, dims[2], dims[3])
|
|
>>> size = torch.Size(dims)
|
|
>>> S = torch.sparse_coo_tensor(I, V, size)
|
|
>>> S
|
|
tensor(indices=tensor([[2, 0, 3],
|
|
[2, 4, 1]]),
|
|
values=tensor([[[-0.6438, -1.6467, 1.4004],
|
|
[ 0.3411, 0.0918, -0.2312]],
|
|
|
|
[[ 0.5348, 0.0634, -2.0494],
|
|
[-0.7125, -1.0646, 2.1844]],
|
|
|
|
[[ 0.1276, 0.1874, -0.6334],
|
|
[-1.9682, -0.5340, 0.7483]]]),
|
|
size=(5, 5, 2, 3), nnz=3, layout=torch.sparse_coo)
|
|
|
|
# when sum over only part of sparse_dims, return a sparse tensor
|
|
>>> torch.sparse.sum(S, [1, 3])
|
|
tensor(indices=tensor([[0, 2, 3]]),
|
|
values=tensor([[-1.4512, 0.4073],
|
|
[-0.8901, 0.2017],
|
|
[-0.3183, -1.7539]]),
|
|
size=(5, 2), nnz=3, layout=torch.sparse_coo)
|
|
|
|
# when sum over all sparse dim, return a dense tensor
|
|
# with summed dims squeezed
|
|
>>> torch.sparse.sum(S, [0, 1, 3])
|
|
tensor([-2.6596, -1.1450])
|
|
"""
|
|
if dtype is None:
|
|
if dim is not None:
|
|
return torch._sparse_sum(input, dim)
|
|
else:
|
|
return torch._sparse_sum(input)
|
|
else:
|
|
if dim is not None:
|
|
return torch._sparse_sum(input, dim, dtype=dtype)
|
|
else:
|
|
return torch._sparse_sum(input, dtype=dtype)
|
|
|
|
|
|
softmax = _add_docstr(_sparse._sparse_softmax, r"""
|
|
sparse.softmax(input, dim, *, dtype=None) -> Tensor
|
|
|
|
Applies a softmax function.
|
|
|
|
Softmax is defined as:
|
|
|
|
:math:`\text{Softmax}(x_{i}) = \frac{exp(x_i)}{\sum_j exp(x_j)}`
|
|
|
|
where :math:`i, j` run over sparse tensor indices and unspecified
|
|
entries are ignores. This is equivalent to defining unspecified
|
|
entries as negative infinity so that :math:`exp(x_k) = 0` when the
|
|
entry with index :math:`k` has not specified.
|
|
|
|
It is applied to all slices along `dim`, and will re-scale them so
|
|
that the elements lie in the range `[0, 1]` and sum to 1.
|
|
|
|
Args:
|
|
input (Tensor): input
|
|
dim (int): A dimension along which softmax will be computed.
|
|
dtype (:class:`torch.dtype`, optional): the desired data type
|
|
of returned tensor. If specified, the input tensor is
|
|
casted to :attr:`dtype` before the operation is
|
|
performed. This is useful for preventing data type
|
|
overflows. Default: None
|
|
""")
|
|
|
|
|
|
log_softmax = _add_docstr(_sparse._sparse_log_softmax, r"""
|
|
sparse.log_softmax(input, dim, *, dtype=None) -> Tensor
|
|
|
|
Applies a softmax function followed by logarithm.
|
|
|
|
See :class:`~torch.sparse.softmax` for more details.
|
|
|
|
Args:
|
|
input (Tensor): input
|
|
dim (int): A dimension along which softmax will be computed.
|
|
dtype (:class:`torch.dtype`, optional): the desired data type
|
|
of returned tensor. If specified, the input tensor is
|
|
casted to :attr:`dtype` before the operation is
|
|
performed. This is useful for preventing data type
|
|
overflows. Default: None
|
|
""")
|