pytorch/torch/distributed/fsdp/_init_utils.py
Andrew Gu 8cd1808dbf [FSDP] Introduce "fully sharded module"; remove comm. module (#90933)
This PR removes the "communication module" (comm. module / `comm_module`) concept from the FSDP code base since it causes disproportionate confusion compared to its benefit for now.

Instead, we introduce the term "fully sharded module" as the single concept to unify the wrapper and non-wrapper code paths. The definition is presented in a note at the top of `flat_param.py`. I reproduce it here:

---
We define the **"fully sharded module"** to be the original `nn.Module` that owns a `FlatParamHandle`. It is the *single* module logically responsible for the *single* unshard/reshard pair for the handle's `FlatParameter` for a given forward or backward pass. The fully sharded module should be passed to the `FlatParamHandle` constructor.

For the wrapper code path:
- The `FullyShardedDataParallel` module wrapping the fully sharded module runs the unshard/reshard on behalf of the fully sharded module by overriding `nn.Module.forward`.
- The fully sharded module is exactly the module passed to the `FullyShardedDataParallel` constructor's `module` argument and is saved in `_fsdp_wrapped_module`.

For the non-wrapper code path:
- Hooks registered on the fully sharded module run the unshard/reshard.
- The fully sharded module may either be the direct argument to `fully_shard` or a submodule chosen by the provided wrapping policy.
---

After this PR, `handle.flat_param._fqns`, `_param_infos`, and `_shared_param_infos` all prefix names from the same module, namely the fully sharded module. This should make state dict less confusing.

---
As an example, consider:
```
mod: Module(
  sub1: Submodule(
    subsub1: Subsubmodule(),
    subsub2: Subsubmodule(),
  ),
  sub2: Submodule(
    subsub1: Subsubmodule(),
    subsub2: Subsubmodule(),
  ),
)
```
For wrapper FSDP manual wrap:
```
mod.sub1 = FSDP(mod.sub1)
mod.sub2 = FSDP(mod.sub2)
mod = FSDP(mod)
```
For wrapper FSDP auto wrap:
```
mod = FSDP(mod, auto_wrap_policy=ModuleWrapPolicy({Submodule}))
```
(WIP) For non-wrapper FSDP manual wrap:
```
fully_shard(mod.sub1)
fully_shard(mod.sub2)
fully_shard(mod)
```
For non-wrapper FSDP auto wrap:
```
fully_shard(mod, policy=ModuleWrapPolicy({Submodule}))
```
The fully sharded module **in all cases** are `mod`, `mod.sub1`, `mod.sub2`, and notably, `subsub1` and `subsub2`s are not fully sharded modules.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90933
Approved by: https://github.com/rohan-varma
2022-12-16 18:45:52 +00:00

927 lines
34 KiB
Python

import collections
import warnings
from typing import (
Any,
Callable,
Dict,
Generator,
Iterable,
Iterator,
List,
no_type_check,
Optional,
Set,
Tuple,
Type,
Union,
)
import torch
import torch.distributed as dist
import torch.distributed.fsdp.fully_sharded_data_parallel as fsdp_file
import torch.nn as nn
from torch.distributed.algorithms._comm_hooks import default_hooks
from torch.distributed.distributed_c10d import _get_default_group
from torch.distributed.fsdp._common_utils import (
_FSDPState,
_get_param_to_fqns,
_is_fsdp_flattened,
clean_tensor_name,
TrainingState,
)
from torch.distributed.fsdp._exec_order_utils import _ExecOrderData
from torch.distributed.fsdp._limiter_utils import _FreeEventQueue
from torch.distributed.fsdp._wrap_utils import _get_fully_sharded_module_to_states
from torch.distributed.fsdp.api import (
BackwardPrefetch,
CPUOffload,
FullStateDictConfig,
MixedPrecision,
ShardingStrategy,
StateDictConfig,
StateDictType,
)
from torch.distributed.fsdp.flat_param import (
_HandlesKey,
FlatParameter,
FlatParamHandle,
HandleShardingStrategy,
)
from torch.distributed.fsdp.wrap import _FSDPPolicy
from torch.distributed.utils import _sync_params_and_buffers
from torch.utils.hooks import RemovableHandle
_TORCHDISTX_AVAIL = True
try:
from torchdistx import deferred_init, fake # type: ignore[import]
except ImportError:
_TORCHDISTX_AVAIL = False
PARAM_BROADCAST_BUCKET_SIZE = int(250 * 1024 * 1024)
FSDP_SYNCED = "_fsdp_synced"
# Specification of process groups for hybrid sharding strategies.
HybridShardProcessGroupType = Tuple[dist.ProcessGroup, dist.ProcessGroup]
# Overall specification of process group.
ProcessGroupType = Optional[Union[dist.ProcessGroup, HybridShardProcessGroupType]]
# TODO (awgu): Refactor this later
SHARDING_STRATEGY_MAP = {
ShardingStrategy.NO_SHARD: HandleShardingStrategy.NO_SHARD,
ShardingStrategy.FULL_SHARD: HandleShardingStrategy.FULL_SHARD,
ShardingStrategy.SHARD_GRAD_OP: HandleShardingStrategy.SHARD_GRAD_OP,
ShardingStrategy.HYBRID_SHARD: HandleShardingStrategy.HYBRID_SHARD,
ShardingStrategy._HYBRID_SHARD_ZERO2: HandleShardingStrategy._HYBRID_SHARD_ZERO2,
}
HYBRID_SHARDING_STRATEGIES = {
ShardingStrategy.HYBRID_SHARD,
ShardingStrategy._HYBRID_SHARD_ZERO2,
}
# NOTE: Since non-self attributes cannot be type annotated, several attributes
# on `state` are defined first as local variables before being assigned.
@no_type_check
def _init_process_group_state(
state: _FSDPState,
process_group: ProcessGroupType,
sharding_strategy: ShardingStrategy,
policy: Optional[_FSDPPolicy],
) -> _FSDPState:
if sharding_strategy in HYBRID_SHARDING_STRATEGIES:
if process_group is None and policy is None:
# Raise an error here, since this is manual wrapping with no process group
# passed in, there is no way to ensure all wrapped FSDP instances use the same
# process groups.
raise ValueError(
f"Manual wrapping with {sharding_strategy} requires explicit specification of process group."
)
else:
state = _init_process_group_state_for_hybrid_shard(state, process_group)
assert (
state.process_group is not None
), "Expected to populate state.process_group for hybrid shard"
assert (
state._inter_node_pg is not None
), "Expected to populate state._inter_node_pg for hybrid shard"
assert (
state._inter_node_state is not None
), "Expected to populate state._inter_node_state for hybrid shad."
else:
state.process_group = (
process_group if process_group is not None else _get_default_group()
)
state.rank = state.process_group.rank()
state.world_size = state.process_group.size()
return state
@no_type_check
def _init_process_group_state_for_hybrid_shard(
state: _FSDPState, process_group
) -> _FSDPState:
if process_group is None:
default_group = _get_default_group()
intra_node_group, inter_node_group = _init_intra_and_inter_node_groups(
default_group
)
# we shard across intra-node
state.process_group = intra_node_group
# save _inter_node_pg to allreduce across.
state._inter_node_pg = inter_node_group
else:
# Check type and assign state.process_group and state._inter_node_pg.
if _is_valid_hybrid_shard_pg_type(process_group):
# Assuming that user passed in as intra node group and inter node group
# as documented.
state.process_group, state._inter_node_pg = process_group
else:
raise ValueError(
"Expected process_group to be passed in as either None or "
f"Tuple[dist.ProcessGroup, dist.ProcessGroup] but got {type(process_group)}"
)
# Create state for allreduce
state._inter_node_state = _get_default_comm_hook_state(
process_group=state._inter_node_pg,
)
return state
@no_type_check
def _is_valid_hybrid_shard_pg_type(process_group: Any) -> bool:
return (
isinstance(process_group, tuple)
and len(process_group) == 2
and all(isinstance(pg, dist.ProcessGroup) for pg in process_group)
)
@no_type_check
def _init_intra_node_process_group() -> dist.ProcessGroup:
"""
Returns a process group across the current node.
For example, given each row is a distinct node:
0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15
This API would return an intra-node subgroup across
[0, 7] or [8, 15] depending on the process's rank.
For example, rank 3 would get [0, 7].
"""
intra_node_subgroup, _ = dist.new_subgroups()
return intra_node_subgroup
@no_type_check
def _init_inter_node_process_group(
global_process_group: dist.ProcessGroup,
) -> dist.ProcessGroup:
"""
Returns an inter-node process group where each contained rank has
the same local rank. For example, given each column is a distinct node:
0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15
This API would return inter-node process group {0, 8}, {1, 9}, {2, 10}, and so forth
depending on the process's rank. For example, rank 1 would get {1, 9}, rank 5
would get {5, 13}.
"""
# the inter-node pg that is returned
inter_node_pg = None
sharding_backend = dist.get_backend(global_process_group)
world_size = dist.get_world_size(global_process_group)
# Assuming fully homogeneous setup
num_devices = torch.cuda.device_count()
num_nodes = world_size // num_devices
my_local_rank = dist.get_rank(global_process_group) % num_devices
for local_rank in range(num_devices):
ranks_for_inter_group = [
local_rank + (i * num_devices) for i in range(num_nodes)
]
# every rank always needs to call dist.new_group
grp = dist.new_group(ranks=ranks_for_inter_group, backend=sharding_backend)
if local_rank == my_local_rank:
print(f"{local_rank} created process group for {ranks_for_inter_group}")
inter_node_pg = grp
assert (
inter_node_pg is not None
), f"{my_local_rank} expected to assign inter-node pg, but did not"
return inter_node_pg
def _init_intra_and_inter_node_groups(
global_process_group: dist.ProcessGroup,
) -> Tuple[dist.ProcessGroup, dist.ProcessGroup]:
"""
Initializes intra and inter-node process groups and returns the ones corresponding
to this process's rank.
This function can be used to initialize process groups for ``HYBRID_SHARD`` or
``_HYBRID_SHARD_ZERO2`` in FSDP.
This function assumes each node has an equal number of CUDA-enabled devices.
Returns:
Tuple[dist.ProcessGroup, dist.ProcessGroup]: Intra and inter-node process group.
"""
return (
_init_intra_node_process_group(),
_init_inter_node_process_group(global_process_group),
)
@no_type_check
def _init_ignored_module_states(
state: _FSDPState,
module: nn.Module,
ignored_modules: Optional[Iterable[torch.nn.Module]],
) -> _FSDPState:
state._ignored_modules = _get_ignored_modules(module, ignored_modules)
state._ignored_params, state._ignored_param_names = _get_ignored_params(
module,
state._ignored_modules,
)
# TODO: FSDP's contract for buffers is not well-defined. They are
# implicitly ignored for most functionality since they are not sharded;
# however, FSDP still imposes some semantics on buffers (e.g. buffer mixed
# precision). We should formalize this contract and decide if we need to
# compute and store `_ignored_buffers`.
return state
@no_type_check
def _init_buffer_state(
state: _FSDPState,
module: nn.Module,
) -> _FSDPState:
state._buffer_names = _get_buffer_names(module)
# Save a mapping from clean fully-qualified buffer name (starting from
# `module`) to its original dtype for restoring that dtype during model
# checkpointing when buffer mixed precision is enabled. The names should
# be clean since the casting happens in a `summon_full_params()` context.
_buffer_name_to_orig_dtype: Dict[str, torch.dtype] = {}
for buffer_name, buffer in module.named_buffers():
buffer_name = clean_tensor_name(buffer_name)
_buffer_name_to_orig_dtype[buffer_name] = buffer.dtype
state._buffer_name_to_orig_dtype = _buffer_name_to_orig_dtype
return state
@no_type_check
def _init_core_state(
state: _FSDPState,
sharding_strategy: Optional[ShardingStrategy],
mixed_precision: Optional[MixedPrecision],
cpu_offload: Optional[CPUOffload],
limit_all_gathers: bool,
use_orig_params: bool,
backward_prefetch_limit: int,
forward_prefetch_limit: int,
) -> _FSDPState:
# We clamp the strategy to `NO_SHARD` for world size of 1 since they are
# currently functionally equivalent. This may change if/when we integrate
# FSDP with MoE.
if state.world_size == 1:
if sharding_strategy != ShardingStrategy.NO_SHARD:
warnings.warn(
"FSDP is switching to use `NO_SHARD` instead of "
f"{sharding_strategy or ShardingStrategy.FULL_SHARD} since "
"the world size is 1."
)
sharding_strategy = ShardingStrategy.NO_SHARD
state.sharding_strategy = sharding_strategy or ShardingStrategy.FULL_SHARD
state.mixed_precision = mixed_precision or MixedPrecision()
state.cpu_offload = cpu_offload or CPUOffload()
state.limit_all_gathers = limit_all_gathers
state._use_orig_params = use_orig_params
state.training_state = TrainingState.IDLE
state._is_root = None
_streams: Dict[str, torch.cuda.Stream] = {}
state._streams = _streams
_stream_to_name: Dict[torch.cuda.Stream, str] = {}
state._stream_to_name = _stream_to_name
state._free_event_queue = _FreeEventQueue()
state._debug_level = dist.get_debug_level()
state._exec_order_data = _ExecOrderData(
state._debug_level,
backward_prefetch_limit,
forward_prefetch_limit,
)
# Mapping from fully sharded module to the handles it is responsible to
# unshard and reshard (see [Note: Fully Sharded Module])
_fully_sharded_module_to_handles: Dict[
nn.Module, List[FlatParamHandle]
] = collections.defaultdict(list)
state._fully_sharded_module_to_handles = _fully_sharded_module_to_handles
# Invariant: `state.params` contains exactly the `FlatParameter`s of the
# handles in `state._handles`
_handles: List[FlatParamHandle] = []
state._handles = _handles
params: List[FlatParameter] = []
state.params = params
return state
@no_type_check
def _init_runtime_state(
state: _FSDPState,
) -> _FSDPState:
_root_pre_forward_handles: List[RemovableHandle] = []
state._root_pre_forward_handles = _root_pre_forward_handles
_pre_forward_handles: List[RemovableHandle] = []
state._pre_forward_handles = _pre_forward_handles
_post_forward_handles: List[RemovableHandle] = []
state._post_forward_handles = _post_forward_handles
state._sync_gradients = True
state._communication_hook = _get_default_comm_hook(state.sharding_strategy)
state._communication_hook_state = _get_default_comm_hook_state(state.process_group)
state._hook_registered = False
# Used to prevent running the pre-backward hook multiple times
_ran_pre_backward_hook: Dict[_HandlesKey, bool] = {}
state._ran_pre_backward_hook = _ran_pre_backward_hook
return state
@no_type_check
def _init_prefetching_state(
state: _FSDPState,
backward_prefetch: BackwardPrefetch,
forward_prefetch: bool,
) -> _FSDPState:
state.backward_prefetch = backward_prefetch
state.forward_prefetch = forward_prefetch
_handles_prefetched: Dict[_HandlesKey, bool] = {}
state._handles_prefetched = _handles_prefetched
# Used for guarding against mistargeted backward prefetches
_needs_pre_backward_unshard: Dict[_HandlesKey, bool] = {}
state._needs_pre_backward_unshard = _needs_pre_backward_unshard
# Used for guarding against mistargeted forward prefetches
_needs_pre_forward_unshard: Dict[_HandlesKey, bool] = {}
state._needs_pre_forward_unshard = _needs_pre_forward_unshard
# The data structures use tuples of handles to generalize over the case
# where a module's forward involves multiple handles.
return state
def _init_state_dict_state(state: _FSDPState) -> _FSDPState:
state._state_dict_type = StateDictType.FULL_STATE_DICT
state_dict_config: StateDictConfig = FullStateDictConfig()
state._state_dict_config = state_dict_config
unshard_params_ctx: Dict[nn.Module, Generator] = {}
state._unshard_params_ctx = unshard_params_ctx
return state
@no_type_check
def _init_param_handle_from_module(
state: _FSDPState,
fully_sharded_module: nn.Module,
device_id: Optional[Union[int, torch.device]],
param_init_fn: Optional[Callable[[nn.Module], None]],
sync_module_states: bool,
module_wrapper_cls: Type,
) -> _FSDPState:
"""
Initializes a ``FlatParamHandle`` from a module ``fully_sharded_module``.
This is the module wrapper code path.
"""
_check_single_device_module(fully_sharded_module, state._ignored_params)
device_from_device_id = _get_device_from_device_id(device_id, state.rank)
_materialize_module(
fully_sharded_module,
param_init_fn,
state._ignored_params,
device_from_device_id,
lambda k: not isinstance(k, module_wrapper_cls),
)
# TODO: Investigate refactoring `_move_module_to_device()` to
# `_move_states_to_device()` to avoid the `device_id` + CPU offload hack
_move_module_to_device(
fully_sharded_module, state._ignored_params, device_from_device_id
)
state.compute_device = _get_compute_device(
fully_sharded_module,
state._ignored_params,
device_from_device_id,
state.rank,
)
managed_params = list(_get_orig_params(fully_sharded_module, state._ignored_params))
if sync_module_states:
_sync_module_params_and_buffers(
fully_sharded_module, managed_params, state.process_group
)
_init_param_handle_from_params(state, managed_params, fully_sharded_module)
return state
@no_type_check
def _init_param_handles_from_module(
state: _FSDPState,
root_module: nn.Module,
policy: _FSDPPolicy,
device_id: Optional[Union[int, torch.device]],
param_init_fn: Optional[Callable[[nn.Module], None]],
sync_module_states: bool,
) -> _FSDPState:
"""
Initializes all ``FlatParamHandle`` s from a module ``root_module``. This
is the non-module-wrapper code path. ``root_module`` is guaranteed to be
a fully sharded module, and some of its submodules may be as well,
depending on ``policy``. See [Note: Fully Sharded Module].
"""
fully_sharded_module_to_states = _get_fully_sharded_module_to_states(
root_module,
policy,
state._ignored_modules,
state._ignored_params,
)
_check_single_device_module(root_module, state._ignored_params)
device_from_device_id = _get_device_from_device_id(device_id, state.rank)
# Initialize and shard `FlatParamHandle`s one by one following bottom-up
# order (hence the `reversed`) to avoid increasing peak GPU memory usage
materialized_module = False
for fully_sharded_module, (params, buffers, param_names, buffer_names) in reversed(
fully_sharded_module_to_states.items()
):
materialized_module |= _materialize_module(
fully_sharded_module,
param_init_fn,
state._ignored_params,
device_from_device_id,
lambda _: True,
)
if materialized_module:
# Materializing from meta device can change the parameter/buffer
# variables, so reacquire references
params = [
fully_sharded_module.get_parameter(param_name)
for param_name in param_names
]
buffers = [
fully_sharded_module.get_buffer(buffer_name)
for buffer_name in buffer_names
]
_move_states_to_device(params, buffers, device_from_device_id)
if not hasattr(state, "compute_device"): # only need to set once
state.compute_device = _get_compute_device(
fully_sharded_module,
state._ignored_params,
device_from_device_id,
state.rank,
)
if sync_module_states:
_sync_module_states(params, buffers, state.process_group)
# Pass `root_module` to have internal FQN metadata prefix starting from
# it instead of `submodule`
_init_param_handle_from_params(state, params, fully_sharded_module)
# Reverse to preserve top-down order like `_fsdp_handles()`
state._handles.reverse()
return state
@no_type_check
def _init_param_handle_from_params(
state: _FSDPState,
params: List[nn.Parameter],
fully_sharded_module: nn.Module,
):
if len(params) == 0:
return
handle = FlatParamHandle(
params,
fully_sharded_module,
state.compute_device,
SHARDING_STRATEGY_MAP[state.sharding_strategy],
state.cpu_offload.offload_params,
state.mixed_precision.param_dtype,
state.mixed_precision.reduce_dtype,
state.mixed_precision.keep_low_precision_grads,
state.process_group,
state._use_orig_params,
)
# TODO: Can simplify call `shard()` in the `FlatParamHandle` ctor
handle.shard()
assert handle not in state._handles
state.params.append(handle.flat_param)
state._handles.append(handle)
state._fully_sharded_module_to_handles[handle._fully_sharded_module].append(handle)
num_fully_sharded_module_handles = len(
state._fully_sharded_module_to_handles[handle._fully_sharded_module]
)
assert num_fully_sharded_module_handles == 1, (
"The current design assumes a module manages at most one "
f"`FlatParamHandle` but got {num_fully_sharded_module_handles}"
)
cpu_device = torch.device("cpu")
if state.cpu_offload.offload_params and handle.flat_param.device != cpu_device:
handle.flat_param_to(cpu_device)
def _get_ignored_modules(
root_module: nn.Module,
_ignored_modules: Optional[Iterable[torch.nn.Module]],
) -> Set[nn.Module]:
"""
Checks that ``_ignored_modules`` is an iterable of ``nn.Module`` s without
any FSDP instances, and returns the modules contained in their module
subtrees as a :class:`set`. Nested FSDP instances are excluded, but their
already-computed ignored modules are included.
"""
if _ignored_modules is None:
return set()
msg_prefix = "`ignored_modules` should be an iterable of `torch.nn.Module`s "
try:
ignored_root_modules = set(_ignored_modules)
except TypeError as e:
raise TypeError(msg_prefix + f"but got {type(_ignored_modules)}") from e
for module in ignored_root_modules:
if not isinstance(module, torch.nn.Module):
raise TypeError(msg_prefix + f"but got an iterable with {type(module)}")
if isinstance(module, fsdp_file.FullyShardedDataParallel):
raise ValueError("`ignored_modules` should not include FSDP modules")
# Include child modules and exclude nested FSDP modules themselves
ignored_modules = set(
child
for module in ignored_root_modules
for child in module.modules()
if not isinstance(child, fsdp_file.FullyShardedDataParallel)
)
if root_module in ignored_modules:
warnings.warn(
"Trying to ignore the top-level module passed into the FSDP "
"constructor itself will result in all parameters being "
f"ignored and is not well-supported: {module}"
)
# Include nested FSDP modules' ignored modules
for submodule in root_module.modules():
if isinstance(submodule, fsdp_file.FullyShardedDataParallel):
assert hasattr(submodule, "_ignored_modules")
ignored_modules.update(submodule._ignored_modules)
return ignored_modules
def _get_ignored_params(
root_module: torch.nn.Module,
ignored_modules: Set[torch.nn.Module],
) -> Tuple[Set[torch.nn.Parameter], Set[str]]:
"""
Returns the parameters of the modules in ``ignored_modules``,
excluding any :class:`FlatParameter` s, and their fully prefixed names,
both as :class:`set` s.
"""
ignored_params = set(
p for m in ignored_modules for p in m.parameters() if not _is_fsdp_flattened(p)
)
# Conservatively include all shared parameters' names
param_to_unflat_param_names = _get_param_to_fqns(
root_module,
dedup_shared_params=False,
)
ignored_param_names = set()
for param in ignored_params:
unflat_param_names = param_to_unflat_param_names[param]
clean_names = []
for k in unflat_param_names:
# Clean any module wrapper prefixes in case of nested wrapping
clean_names.append(clean_tensor_name(k))
ignored_param_names.update(clean_names)
return ignored_params, ignored_param_names
def _get_buffer_names(root_module: nn.Module) -> Set[str]:
"""
Returns the fully prefixed names of all buffers in the module hierarchy
rooted at ``root_module`` as a class:`set`.
"""
return set(
clean_tensor_name(buffer_name) for buffer_name, _ in root_module.named_buffers()
)
def _check_single_device_module(
module: nn.Module,
ignored_params: Set[nn.Parameter],
) -> None:
"""
Raises an error if ``module`` has original parameters on multiple devices,
ignoring the parameters in ``ignored_params``. Thus, after this method, the
module must be either fully on the CPU or fully on a non-CPU device.
"""
devices = set(param.device for param in _get_orig_params(module, ignored_params))
if len(devices) > 1:
raise RuntimeError(
f"FSDP only supports single device modules but got params on {devices}"
)
def _get_device_from_device_id(
device_id: Optional[Union[int, torch.device]],
rank: int,
) -> Optional[torch.device]:
"""
Processes ``device_id`` and returns either the corresponding device or
``None`` if ``device_id`` is ``None``.
"""
if device_id is None:
return None
device = (
device_id if isinstance(device_id, torch.device) else torch.device(device_id)
)
if device == torch.device("cuda"):
warnings.warn(
f"FSDP got the argument `device_id` {device_id} on rank "
f"{rank}, which does not have an explicit index. "
f"FSDP will use the current device {torch.cuda.current_device()}. "
"If this is incorrect, please explicitly call `torch.cuda.set_device()` "
"before FSDP initialization or pass in the explicit device "
"index as the `device_id` argument."
)
device = torch.device("cuda", torch.cuda.current_device())
return device
def _materialize_module(
module: nn.Module,
param_init_fn: Optional[Callable[[nn.Module], None]],
ignored_params: Set[nn.Parameter],
device_from_device_id: Optional[torch.device],
deferred_init_check_fn: Callable,
) -> bool:
"""
Materializes the wrapped module ``module`` in place if needed: either
if the module has parameters that use meta device or are torchdistX
fake tensors.
This method uses ``param_init_fn`` to materialize the module if the
function is not ``None`` and falls back to default behavior otherwise.
For meta device, this moves the module to ``device_from_device_id`` if
it is not ``None`` or the current device otherwise and calls
``reset_parameters()``, and for torchdistX fake tensors, this calls
``deferred_init.materialize_module()``.
Returns:
bool: ``True`` if ``module`` was materialized and ``False`` if this was
a no-op.
"""
managed_params = _get_orig_params(module, ignored_params)
is_meta_module = any(param.is_meta for param in managed_params)
is_torchdistX_deferred_init = (
not is_meta_module
and _TORCHDISTX_AVAIL
and any(fake.is_fake(param) for param in managed_params)
)
if (is_meta_module or is_torchdistX_deferred_init) and param_init_fn is not None:
if not callable(param_init_fn):
raise ValueError(
f"Expected {param_init_fn} to be callable but got {type(param_init_fn)}"
)
param_init_fn(module)
return True
elif is_meta_module:
# Run default meta device initialization
materialization_device = device_from_device_id or torch.device(
torch.cuda.current_device()
)
module.to_empty(device=materialization_device)
try:
with torch.no_grad():
module.reset_parameters() # type: ignore[operator]
except BaseException as e:
warnings.warn(
"Unable to call `reset_parameters()` for module on meta "
f"device with error {str(e)}. Please ensure your "
"module implements a `reset_parameters()` method."
)
raise e
return True
elif is_torchdistX_deferred_init:
# Run default torchdistX initialization
deferred_init.materialize_module(module, check_fn=deferred_init_check_fn)
return True
return False
def _move_module_to_device(
module: nn.Module,
ignored_params: Set[nn.Parameter],
device_from_device_id: Optional[torch.device],
) -> None:
"""
Moves ``module`` depending on ``device_from_device_id`` and its current
device. This includes moving ignored modules' parameters.
- If ``device_from_device_id`` is not ``None``, then this moves
``module`` to the device.
- If ``device_from_device_id`` is ``None``, then this does not move
``module`` but warns the user if it is on CPU.
Precondition: ``_check_single_device_module()``.
"""
param = next(_get_orig_params(module, ignored_params), None)
if param is None:
return # no original parameters to manage
cpu_device = torch.device("cpu")
if device_from_device_id is not None:
if param.device == cpu_device:
# NOTE: This includes moving ignored modules' parameters.
module = module.to(device_from_device_id)
# TODO: This is a temporary fix to move already-constructed
# `FlatParameter`s back to CPU if needed. This is needed to
# make CPU offload work with `device_id`.
for submodule in module.modules():
if (
isinstance(submodule, fsdp_file.FullyShardedDataParallel)
and submodule.cpu_offload.offload_params
):
for handle in submodule._handles:
handle.flat_param_to(torch.device("cpu"))
elif param.device == cpu_device:
_warn_cpu_init()
def _move_states_to_device(
params: List[nn.Parameter],
buffers: List[torch.Tensor],
device_from_device_id: Optional[torch.device],
) -> None:
"""
Precondition: ``_check_single_device_module()``.
"""
if len(params) == 0 and len(buffers) == 0:
return
if len(params) > 0:
current_device = params[0].device
elif len(buffers) > 0:
current_device = buffers[0].device
cpu_device = torch.device("cpu")
if device_from_device_id is not None:
# Move the parameters and buffers like the `.data` code path in
# `nn.Module._apply()`, which underlies `nn.Module.to()`
for param in params:
with torch.no_grad():
param.data = param.to(device_from_device_id)
if param.grad is not None:
param.grad.data = param.grad.to(device_from_device_id)
for buffer in buffers:
buffer.data = buffer.to(device_from_device_id)
elif current_device == cpu_device:
_warn_cpu_init()
def _warn_cpu_init():
warnings.warn(
"The passed-in `module` is on CPU and will thus have FSDP's sharding "
"initialization run on CPU, which may be slower than on GPU. We "
"recommend passing in the `device_id` argument for FSDP to move "
"`module` to GPU for the sharding initialization. `module` must also "
"be on GPU device to work with the `sync_module_states=True` flag "
"since that requires GPU communication."
)
def _get_compute_device(
module: nn.Module,
ignored_params: Set[nn.Parameter],
device_from_device_id: Optional[torch.device],
rank: int,
) -> torch.device:
"""
Determines and returns this FSDP instance's compute device. If the module
is already on a non-CPU device, then the compute device is that non-CPU
device. If the module is on CPU, then the compute device is the current
device.
Since this method should be called after materializing the module, any
non-CPU device should not be meta device. For now, the compute device is
always a CUDA GPU device with its explicit index.
Precondition: ``_check_single_device_module()`` and
``_move_module_to_device()``.
"""
# If the module is on GPU already, then that GPU device has priority
# over the current device
param = next(_get_orig_params(module, ignored_params), None)
if param is not None and param.device.type == "cuda":
compute_device = param.device
else:
compute_device = torch.device("cuda", torch.cuda.current_device())
if device_from_device_id is not None and compute_device != device_from_device_id:
raise ValueError(
f"Inconsistent compute device and `device_id` on rank {rank}: "
f"{compute_device} vs {device_from_device_id}"
)
return compute_device
# TODO: See how to deprecate!
def _sync_module_params_and_buffers(
module: nn.Module,
params: List[nn.Parameter],
process_group: dist.ProcessGroup,
) -> None:
"""
Synchronizes module states (i.e. parameters ``params`` and all
not-yet-synced buffers) by broadcasting from rank 0 to all ranks.
Precondition: ``sync_module_states == True`` and ``self.process_group`` has
been set.
"""
_check_params_for_sync_module_states(params)
module_states: List[torch.Tensor] = []
for buffer in module.buffers():
# Avoid re-synchronizing buffers in case of nested wrapping
if not getattr(buffer, FSDP_SYNCED, False):
setattr(buffer, FSDP_SYNCED, True)
module_states.append(buffer.detach())
module_states.extend(param.detach() for param in params)
_sync_params_and_buffers(
process_group,
module_states,
PARAM_BROADCAST_BUCKET_SIZE,
src=0,
)
def _sync_module_states(
params: List[nn.Parameter],
buffers: List[torch.Tensor],
process_group: dist.ProcessGroup,
) -> None:
_check_params_for_sync_module_states(params)
# Assumes that each call to this method passes in disjoint `params` and
# and `buffers` across calls, so there is no chance of re-synchronizing
params_and_buffers = [param.detach() for param in params] + [
buffer.detach() for buffer in buffers
]
_sync_params_and_buffers(
process_group,
params_and_buffers,
PARAM_BROADCAST_BUCKET_SIZE,
src=0,
)
def _check_params_for_sync_module_states(
params: List[nn.Parameter],
) -> None:
if params and any(param.device == torch.device("cpu") for param in params):
raise ValueError(
"The module has CPU parameters when `sync_module_states=True`, "
"which only works when all parameters are on GPU. Please specify "
"the `device_id` argument or move the module to GPU before passing "
"into FSDP."
)
def _get_orig_params(
module: nn.Module,
ignored_params: Set[nn.Parameter],
) -> Iterator[nn.Parameter]:
"""
Returns an iterator over the original parameters in ``module``, ignoring
the parameters in ``ignored_params``, any ``FlatParameter`` s (which may be
present due to nested FSDP wrapping), and any original parameters already
flattened (only relevant when ``use_orig_params=True``).
"""
param_gen = module.parameters()
try:
while True:
param = next(param_gen)
if param not in ignored_params and not _is_fsdp_flattened(param):
yield param
except StopIteration:
pass
def _check_orig_params_flattened(
fsdp_module,
ignored_params: Set[nn.Parameter],
) -> None:
"""
Checks that all original parameters have been flattened and hence made
invisible to ``named_parameters()`` for the module hierarchy rooted at
``fsdp_module``. This should be called as a sanity check after flattening
the wrapped module's parameters.
"""
for param_name, param in fsdp_module.named_parameters():
if param not in ignored_params and not _is_fsdp_flattened(param):
raise RuntimeError(
f"Found an unflattened parameter: {param_name}; "
f"{param.size()} {param.__class__}"
)
def _get_default_comm_hook(sharding_strategy: ShardingStrategy):
return (
default_hooks.allreduce_hook
if sharding_strategy == ShardingStrategy.NO_SHARD
else default_hooks.reduce_scatter_hook
)
def _get_default_comm_hook_state(
process_group: dist.ProcessGroup,
) -> default_hooks.DefaultState:
return default_hooks.DefaultState(process_group=process_group)