mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Based on top of #9763 (first 3 commits belong to that PR). The first commits from this PR are "Stop using attributes ..." I tried to separate the changes into fairly meaningful commits. I can't split them up into smaller PRs, because everything starts working and all tests pass only after the whole sequence, but hopefully this will make reviewing somewhat easier. Known issues/regressions/future tasks: - `aten::lerp` and `aten::clamp` are no longer fusable - `CreateAutodiffSubgraphs` needs a rewrite - It is much more strict now, and will miss a lot of opportunities, especially when viewing ops are involved. Our previous approach was "ignore the assumption on shape availability in gradient formulas to determine differentiability, and hope that shape prop will be robust enough to actually deliver them before we differentiate", which obviously doesn't scale well to more complex cases. We should either work on reducing the size dependency of grad formulas (feasible e.g. for `view`/`reshape`, unfeasible for `squeeze`/`unsqueeze`), or make `CreateAutodiffSubgraphs` integrate some kind of "I could integrate this node into an AD subgraph, but will I be able to infer the shape of its input" reasoning (kind of like a limited shape prop, that doesn't infer anything, and only tells if it *could* infer something). - It sometimes creates constant-only (or constants + one node) graphs, which is useless - Broken `aten::add` in auto-batching, because it gained a non-tensor input. I changed the test for pointwise operations to use `aten::mul` instead, but I needed to disable the LSTM cell test. I'm not sure how scalar constants should be implemented in this case, because I don't fully understand our format. cc: ChunliF - Graph import does some hacks to recover type of constants. This code should be removed once we'll gain the ability to export the IR along with value types. - There's still a fair amount of dead code that can be removed. I didn't want to make this diff any bigger, and removing it is an easy task. - Graph fuser could be improved to use signature matching (possibly using `OperatorSet`) instead of basing on node kinds. - Manual constant propagation for the `ListConstruct` node in `torch/onnx/utils.py` should be replaced with a proper constant propagation pass (or we should ensure that the one we have handles at least this case before we remove this code). zdevito Pull Request resolved: https://github.com/pytorch/pytorch/pull/9807 Reviewed By: ezyang Differential Revision: D9004285 Pulled By: apaszke fbshipit-source-id: fe88026a765f6b687354add034c86402362508b7
1528 lines
52 KiB
C++
1528 lines
52 KiB
C++
#include "torch/csrc/jit/script/compiler.h"
|
|
#include "torch/csrc/jit/passes/lower_tuples.h"
|
|
#include "torch/csrc/jit/operator.h"
|
|
#include "torch/csrc/jit/interpreter.h"
|
|
#include "torch/csrc/jit/ir.h"
|
|
#include "torch/csrc/jit/script/parser.h"
|
|
#include "torch/csrc/jit/assertions.h"
|
|
#include "torch/csrc/utils/object_ptr.h"
|
|
#include "torch/csrc/jit/operator.h"
|
|
|
|
#include "torch/csrc/jit/constants.h"
|
|
|
|
#include "ATen/optional.h"
|
|
|
|
|
|
#include <climits>
|
|
#include <set>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
namespace script {
|
|
|
|
using SugaredValuePtr = std::shared_ptr<SugaredValue>;
|
|
using FunctionTable = std::unordered_map<std::string, Method&>;
|
|
using ValueTable = std::unordered_map<std::string, SugaredValuePtr>;
|
|
using AttributeMap = std::unordered_map<std::string, Const>;
|
|
using ListAttributeMap = std::unordered_map<std::string, std::vector<Const>>;
|
|
|
|
struct NoneValue : SugaredValue {
|
|
NoneValue() {}
|
|
virtual std::string kind() const override {
|
|
return "None";
|
|
}
|
|
};
|
|
|
|
struct PrintValue : public SugaredValue {
|
|
std::string kind() const override {
|
|
return "print";
|
|
}
|
|
std::shared_ptr<SugaredValue> call(
|
|
SourceRange loc,
|
|
Method & m,
|
|
at::ArrayRef<NamedValue> inputs,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
size_t n_binders) override {
|
|
auto& g = *m.graph();
|
|
if (!attributes.empty())
|
|
throw ErrorReport(loc) << "print doesn't accept any keyword arguments";
|
|
auto values = toValues(inputs);
|
|
ensureTensors(loc, values);
|
|
g.insertNode(g.create(prim::Print, values, 0)
|
|
->setSourceLocation(std::make_shared<SourceRange>(loc)));
|
|
return std::make_shared<NoneValue>();
|
|
}
|
|
};
|
|
|
|
static Value* numToTensor(const SourceRange& loc, Value* value) {
|
|
auto& graph = *value->owningGraph();
|
|
auto n = graph.insertNode(graph.createNumToTensor(value))
|
|
->setSourceLocation(std::make_shared<SourceRange>(loc));
|
|
return n->output();
|
|
}
|
|
|
|
static Value* tensorToNum(
|
|
const SourceRange& loc,
|
|
Value* value,
|
|
const TypePtr type) {
|
|
auto& graph = *value->owningGraph();
|
|
auto* result = graph.insertNode(graph.createTensorToNum(type, value))
|
|
->setSourceLocation(std::make_shared<SourceRange>(loc))
|
|
->output();
|
|
return result;
|
|
}
|
|
|
|
// expressions like int(x)
|
|
struct CastValue : public SugaredValue {
|
|
CastValue(TypePtr type)
|
|
: type(type) {}
|
|
std::string kind() const override {
|
|
std::stringstream ss;
|
|
ss << "<" << type->str() << " cast primitive>";
|
|
return ss.str();
|
|
}
|
|
std::shared_ptr<SugaredValue> call(
|
|
SourceRange loc,
|
|
Method & m,
|
|
at::ArrayRef<NamedValue> inputs,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
size_t n_binders) override {
|
|
if (!attributes.empty())
|
|
throw ErrorReport(loc) << "casts do not accept any keyword arguments";
|
|
if (inputs.size() != 1)
|
|
throw ErrorReport(loc) << "expected a single argument for cast";
|
|
auto values = toValues(inputs);
|
|
Value* input = values.at(0);
|
|
if(!input->type()->isSubtypeOf(type)) {
|
|
if(*type == *DynamicType::get()) {
|
|
if(!input->type()->isSubtypeOf(NumberType::get())) {
|
|
throw ErrorReport(loc) << "expected a number";
|
|
}
|
|
input = numToTensor(loc, input);
|
|
} else {
|
|
ensureTensors(loc, values);
|
|
input = tensorToNum(loc, values.at(0), type);
|
|
}
|
|
}
|
|
return std::make_shared<SimpleValue>(input);
|
|
}
|
|
private:
|
|
TypePtr type;
|
|
};
|
|
|
|
// Auxiliary data structure for desugaring variable binding into our always
|
|
// explicitly scoped language as we descend down
|
|
// nested control structures in the frontend (which themselves don't introduce
|
|
// scopes)
|
|
//
|
|
// The algorithm is roughly as follows:
|
|
// 1) While emitting a block within a control operator, add inputs and outputs
|
|
// from the block for each value referenced (both "reads" and "writes").
|
|
// This sets the value up as a candidate loop carried dependency.
|
|
// 2) When we reach the end of the block, examine all the values in the current
|
|
// scope's value map. If the name also resides in an outer scope with a
|
|
// different Value*, this is a true loop-carried dependency. If not, this
|
|
// value was not assigned to. Replace all references to the block input
|
|
// with the Value* pointed to in the tightest enclosing scope. Then delete
|
|
// that block input and output.
|
|
// 3) When we emit the actual control operator, take all of the loop-carried
|
|
// dependency values as inputs and return them as outputs from the control
|
|
// op
|
|
//
|
|
// Note that an alternative implementation could only add the loop-carried dep
|
|
// inputs and outputs when we see a value that is mutated. This, however
|
|
// requires replacing all references to that value *within the current
|
|
// block* with a new input. That is to say: we need to traverse the pre-
|
|
// decessor nodes and replace inputs that reference that value with the
|
|
// newly-created input. This could be made less expensive with a change to
|
|
// the IR API, but for now we choose to pessimisitically create inputs and
|
|
// delete unnecessary ones later with replaceAllusesWith().
|
|
struct Environment {
|
|
Environment(Method & method, const Resolver& resolver, Block* b, std::shared_ptr<Environment> next = nullptr)
|
|
: method(method), resolver(resolver), b(b), next(next) {}
|
|
|
|
Method & method;
|
|
const Resolver& resolver;
|
|
std::vector<std::string> captured_inputs;
|
|
Block* b;
|
|
|
|
std::shared_ptr<Environment> next;
|
|
|
|
SugaredValuePtr findInThisFrame(const std::string& name) {
|
|
auto it = value_table.find(name);
|
|
if (it != value_table.end()) {
|
|
return it->second;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
SugaredValuePtr findInParentFrame(const std::string& name) {
|
|
return next ? next->findInAnyFrame(name) : nullptr;
|
|
}
|
|
|
|
SugaredValuePtr findInAnyFrame(const std::string& name) {
|
|
for (auto runner = this; runner; runner = runner->next.get()) {
|
|
if(auto r = runner->findInThisFrame(name)) {
|
|
return r;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Value* getValueInThisFrame(const SourceRange& loc, const std::string& name) {
|
|
return value_table.at(name)->asValue(loc, method);
|
|
}
|
|
|
|
SugaredValuePtr createCapturedInput(Value* orig, const std::string& name) {
|
|
// Create the input
|
|
Value* new_input = b->addInput()->setType(orig->type());
|
|
|
|
// Associate this name with this value
|
|
auto sv = std::make_shared<SimpleValue>(new_input);
|
|
value_table[name] = sv;
|
|
|
|
// List as a positional input
|
|
captured_inputs.push_back(name);
|
|
|
|
return sv;
|
|
}
|
|
|
|
SugaredValuePtr createCapturedInputIfNeeded(const SourceRange& loc, std::string ident) {
|
|
auto in_frame = findInThisFrame(ident);
|
|
if (in_frame)
|
|
return in_frame;
|
|
|
|
// recursively handles the case where parent blocks are also loops
|
|
auto from_parent = next ? next->createCapturedInputIfNeeded(loc, ident) : nullptr;
|
|
|
|
// recursively create the captured input if it is the loop block
|
|
if (from_parent && getBlockOwningKind() == prim::Loop) {
|
|
if (Value* simple_val = asSimple(from_parent))
|
|
from_parent = createCapturedInput(simple_val, ident);
|
|
}
|
|
return from_parent;
|
|
}
|
|
|
|
Block* block() {
|
|
return b;
|
|
}
|
|
Symbol getBlockOwningKind() {
|
|
Symbol owning_kind = Symbol();
|
|
if (b->owningNode()) {
|
|
owning_kind = b->owningNode()->kind();
|
|
}
|
|
return owning_kind;
|
|
}
|
|
|
|
void setVar(const SourceRange& loc, const std::string& name, Value* value) {
|
|
setSugaredVar(loc, name, std::make_shared<SimpleValue>(value));
|
|
}
|
|
static Value* asSimple(SugaredValuePtr value) {
|
|
if(SimpleValue* sv = dynamic_cast<SimpleValue*>(value.get())) {
|
|
return sv->getValue();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void setSugaredVar(const SourceRange& loc, const std::string& name, SugaredValuePtr value) {
|
|
Value* as_simple_value = asSimple(value);
|
|
if (as_simple_value)
|
|
as_simple_value->setUniqueName(name);
|
|
// prevent re-assignment involving any sugared values
|
|
// any reassignment like:
|
|
// a = ...
|
|
// while ...
|
|
// a = ..
|
|
// requires 'a' to be first-class in the graph since its value depends on
|
|
// control flow
|
|
if(auto parent = findInParentFrame(name)) {
|
|
if(!as_simple_value) {
|
|
throw ErrorReport(loc) << "Cannot re-assign '" << name << "' to a value of type " << value->kind() <<
|
|
" because " << name << " is not a first-class value. Only reassignments to first-class values are allowed";
|
|
}
|
|
Value* simple_parent = asSimple(parent);
|
|
if(!simple_parent) {
|
|
throw ErrorReport(loc) << "Cannot re-assign '" << name << "' because it has type " << value->kind() <<
|
|
" and " << name << " is not a first-class value. Only reassignments to first-class values are allowed";
|
|
}
|
|
if(!as_simple_value->type()->isSubtypeOf(unshapedType(simple_parent->type()))) {
|
|
throw ErrorReport(loc) << "variable '" << name << "' previously has type " << simple_parent->type()->str()
|
|
<< " but is now being assigned to a value of type " << as_simple_value->type()->str();
|
|
}
|
|
}
|
|
if (as_simple_value)
|
|
createCapturedInputIfNeeded(loc, name);
|
|
value_table[name] = std::move(value);
|
|
}
|
|
|
|
SugaredValuePtr getSugaredVar(const Ident& ident, bool required=true) {
|
|
return getSugaredVar(ident.name(), ident.range());
|
|
}
|
|
Value* getVar(const Ident& ident) {
|
|
return getSugaredVar(ident)->asValue(ident.range(), method);
|
|
}
|
|
|
|
SugaredValuePtr getSugaredVar(const std::string& ident, SourceRange range, bool required=true) {
|
|
auto retval = createCapturedInputIfNeeded(range, ident);
|
|
|
|
if(!retval) {
|
|
retval = resolver(ident);
|
|
}
|
|
|
|
if(!retval) {
|
|
static std::unordered_map<std::string, SugaredValuePtr> globals = {
|
|
{"print", std::make_shared<PrintValue>()},
|
|
{"float", std::make_shared<CastValue>(FloatType::get())},
|
|
{"int", std::make_shared<CastValue>(IntType::get())},
|
|
{"bool", std::make_shared<CastValue>(IntType::get())},
|
|
// todo(zach): remove when we can correctly export torch.full via ONNX
|
|
// or we have implicit conversion that can convert numbers to tensors
|
|
{"_to_tensor", std::make_shared<CastValue>(DynamicType::get()) },
|
|
};
|
|
auto it = globals.find(ident);
|
|
if(it != globals.end())
|
|
retval = it->second;
|
|
}
|
|
|
|
if (!retval && required) {
|
|
throw ErrorReport(range) << "undefined value " << ident;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
Value* getVar(const std::string& ident, SourceRange range) {
|
|
return getSugaredVar(ident, range)->asValue(range, method);
|
|
}
|
|
|
|
// Given that after emitting statements in a block, we've added block inputs
|
|
// for all value references and assignments, delete inputs for which there was
|
|
// no assignment, only references.
|
|
void deleteExtraInputs(const SourceRange& loc) {
|
|
// note: skip i == 0, it is the loop trip count for inputs
|
|
// and the loop condition for outputs.
|
|
// captured_inputs is indexed by i - 1 since it only contains loop
|
|
// carried dependencies
|
|
// inputs: loop_counter, lcd0, lcd1, ...
|
|
// outputs: loop_condition, lcd0, lcd1, ...
|
|
// captured_inputs: lcd0, lcd1, ...
|
|
JIT_ASSERT(b->inputs().size() == b->outputs().size());
|
|
JIT_ASSERT(b->inputs().size() == captured_inputs.size() + 1);
|
|
for(size_t i = b->inputs().size() - 1; i > 0; i--) {
|
|
// nothing changed along this loop
|
|
if(b->inputs()[i] == b->outputs()[i]) {
|
|
auto name = captured_inputs[i - 1];
|
|
Value* orig = findInParentFrame(name)->asValue(loc, method);
|
|
b->inputs()[i]->replaceAllUsesWith(orig);
|
|
b->eraseInput(i);
|
|
b->eraseOutput(i);
|
|
captured_inputs.erase(captured_inputs.begin() + i - 1);
|
|
}
|
|
}
|
|
}
|
|
std::vector<std::string> definedVariables() {
|
|
std::vector<std::string> result;
|
|
for(auto & kv : value_table) {
|
|
result.push_back(kv.first);
|
|
}
|
|
return result;
|
|
}
|
|
private:
|
|
ValueTable value_table;
|
|
};
|
|
|
|
std::shared_ptr<SugaredValue> packOutputs(Graph& g, at::ArrayRef<Value*> values) {
|
|
if(values.size() == 1) {
|
|
return std::make_shared<SimpleValue>(values[0]);
|
|
}
|
|
return std::make_shared<SimpleValue>(g.insertNode(g.createTuple(values))->output());
|
|
}
|
|
|
|
Value* createNumber(Graph& g, const SourceRange& loc, const at::Tensor& val) {
|
|
JIT_ASSERT(val.numel() == 1);
|
|
auto* output = insertConstant(g, val, loc);
|
|
if (val.type().scalarType() == at::kLong) {
|
|
output->setType(IntType::get());
|
|
} else if (val.type().scalarType() == at::kFloat) {
|
|
output->setType(FloatType::get());
|
|
} else {
|
|
throw ErrorReport(loc) << "createNumber with unknown scalar type ("
|
|
<< val.type().scalarType() << "). Please file a bug report.";
|
|
}
|
|
return output;
|
|
}
|
|
|
|
Value* createStack(Graph& g, const SourceRange& loc, at::ArrayRef<Value*> inputs) {
|
|
// bake in constant propagation for the all-constant case because it is
|
|
// common to see constant lists like [1, 2] passed to attributes
|
|
bool all_constant = std::all_of(inputs.begin(), inputs.end(), [&](Value* v) {
|
|
return v->node()->kind() == prim::Constant;
|
|
});
|
|
if(all_constant) {
|
|
auto values = fmap(inputs, [&](Value* v) {
|
|
return v->node()->t(attr::value);
|
|
});
|
|
return insertConstant(g, at::stack(values), loc);
|
|
}
|
|
return g.insertNode(g.create(aten::stack, inputs)
|
|
->i_(attr::dim, 0)
|
|
->setSourceLocation(std::make_shared<SourceRange>(loc)))->output();
|
|
}
|
|
|
|
static bool isTensorSubtype(Value* v) {
|
|
return v->type()->isSubtypeOf(DynamicType::get());
|
|
}
|
|
|
|
at::optional<std::vector<int64_t>> getIntListAttribute(at::optional<int32_t> N, Value* input) {
|
|
auto list = constant_as<Shared<jit::IntList>>(input);
|
|
if(list)
|
|
return std::vector<int64_t>(list.value()->elements());
|
|
// broadcast IntList[3] with value 4 -> {4, 4, 4}
|
|
if(!N)
|
|
return at::nullopt;
|
|
auto r = constant_as<int64_t>(input);
|
|
if(!r)
|
|
return at::nullopt;
|
|
// broadcast to attribute size
|
|
return std::vector<int64_t>(*N, *r);
|
|
}
|
|
|
|
at::ArrayRef<Value*> createTupleUnpack(Value* v) {
|
|
// small peephole optimization to ensure IntList attributes can still turn
|
|
// into constants e.g. in x.expand([3, 4])
|
|
if(v->node()->kind() == prim::TupleConstruct)
|
|
return v->node()->inputs();
|
|
auto & g = *v->owningGraph();
|
|
return g.insertNode(g.createTupleUnpack(v))->outputs();
|
|
}
|
|
|
|
static inline bool isIntUsedAsIntList(
|
|
const Value* value,
|
|
const Argument& arg) {
|
|
// Look for int[N]
|
|
return value->type()->kind() == TypeKind::IntType &&
|
|
*arg.type == *ListType::ofInts() && arg.N;
|
|
}
|
|
|
|
at::optional<std::vector<Value*>> tryMatchSchema(
|
|
const FunctionSchema& schema,
|
|
const SourceRange& loc,
|
|
Graph& graph,
|
|
at::ArrayRef<NamedValue> inputs,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
std::ostream& failure_messages) {
|
|
auto err = [&]() -> std::ostream& {
|
|
failure_messages << "\nfor operator " << schema << ":\n";
|
|
return failure_messages;
|
|
};
|
|
|
|
std::vector<at::optional<NamedValue>> positional_inputs(schema.arguments.size(), at::nullopt);
|
|
|
|
size_t total_inputs = attributes.size() + inputs.size();
|
|
if(total_inputs > schema.arguments.size()) {
|
|
err() << "expected at most " << schema.arguments.size() << " arguments "
|
|
<< "but found " << total_inputs << "\n" << loc << "\n";
|
|
return at::nullopt;
|
|
}
|
|
// fill in positional arguments
|
|
for(size_t i = 0; i < inputs.size(); ++i) {
|
|
positional_inputs[i] = inputs[i];
|
|
}
|
|
// fill in named arguments
|
|
for(const NamedValue& nv : attributes) {
|
|
auto idx = schema.argumentIndexWithName(nv.name);
|
|
if(!idx) {
|
|
err() << "unknown keyword argument '" << nv.name << "'\n" << nv.loc;
|
|
return at::nullopt;
|
|
}
|
|
if(positional_inputs[*idx]) {
|
|
err() << "argument '" << nv.name << "' specified twice \n" << nv.loc;
|
|
return at::nullopt;
|
|
}
|
|
positional_inputs[*idx] = nv;
|
|
}
|
|
// fill in default values
|
|
for(size_t i = 0; i < positional_inputs.size(); ++i) {
|
|
if(positional_inputs[i])
|
|
continue;
|
|
auto default_value = schema.arguments[i].default_value;
|
|
if(!default_value) {
|
|
err() << "argument '" << schema.arguments[i].name << "' not provided.\n" << loc;
|
|
return at::nullopt;
|
|
}
|
|
positional_inputs[i] = NamedValue(
|
|
loc, i,
|
|
insertConstant(graph, *default_value, loc));
|
|
}
|
|
|
|
// check input types
|
|
std::vector<Value*> flat_inputs;
|
|
for(size_t i = 0; i < schema.arguments.size(); ++i) {
|
|
NamedValue v = *positional_inputs[i];
|
|
const auto& arg = schema.arguments[i];
|
|
|
|
// some functions that take lists of integers for fixed size arrays
|
|
// also allow single ints to be passed in their place.
|
|
// the single int is then repeated to the length of the list
|
|
if (isIntUsedAsIntList(v.value, arg)) {
|
|
std::vector<Value*> repeated(*arg.N, v.value);
|
|
v.value = graph.insertNode(graph.createList(IntType::get(), repeated))->output();
|
|
}
|
|
|
|
// Allow tuples that only contain integers to turn into lists of integers
|
|
if(*ListType::ofInts() == *arg.type &&
|
|
v.value->type()->kind() == TypeKind::TupleType &&
|
|
v.value->type()->isSubtypeOf(ListType::ofInts())) {
|
|
auto unpacked = createTupleUnpack(v.value);
|
|
v.value = graph.insertNode(graph.createList(IntType::get(), unpacked))->output();
|
|
}
|
|
|
|
if(!v.value->type()->isSubtypeOf(arg.type)) {
|
|
err() << "expected a value of type " << arg.type->str() << " for argument '" << arg.name << "' but found "
|
|
<< v.value->type()->str() << "\n"
|
|
<< v.loc;
|
|
return at::nullopt;
|
|
}
|
|
|
|
// we only support tensor lists for builtins, where they must be flattened
|
|
if(arg.type->isSubtypeOf(ListType::ofTensors())) {
|
|
auto outputs = createTupleUnpack(v.value);
|
|
flat_inputs.insert(flat_inputs.end(), outputs.begin(), outputs.end());
|
|
} else {
|
|
flat_inputs.push_back(v.value);
|
|
}
|
|
}
|
|
|
|
return flat_inputs;
|
|
}
|
|
|
|
|
|
static std::shared_ptr<SugaredValue> tryEmitBuiltin(
|
|
const std::shared_ptr<Operator>& op,
|
|
std::stringstream& failure_messages,
|
|
const SourceRange& loc,
|
|
Method& method,
|
|
const std::string & name,
|
|
at::ArrayRef<NamedValue> inputs,
|
|
at::ArrayRef<NamedValue> attributes) {
|
|
|
|
auto graph = method.graph();
|
|
auto flat_inputs = tryMatchSchema(op->schema, loc, *graph, inputs, attributes, failure_messages);
|
|
if(!flat_inputs)
|
|
return nullptr;
|
|
// we successfully matched this schema, construct the node
|
|
|
|
NodeKind kind(Symbol::aten(name));
|
|
auto n = graph->insertNode(graph->create(kind, *flat_inputs, 0))
|
|
->setSourceLocation(std::make_shared<SourceRange>(loc));
|
|
|
|
// special case for chunk when the chunks=<const> is known
|
|
// DO NOT ADD MORE SPECIAL CASES HERE, REFACTOR INTO A FUNCTION IF
|
|
// NEEDED
|
|
if(n->kind() == aten::chunk) {
|
|
auto value = constant_as<int64_t>((*flat_inputs)[1]);
|
|
if(!value) {
|
|
throw ErrorReport(loc) << "argument 'chunks' must be a constant";
|
|
}
|
|
for(int64_t i = 0; i < *value; ++i)
|
|
n->addOutput();
|
|
} else {
|
|
for(auto & ret : op->schema.returns) {
|
|
n->addOutput()->setType(ret.type);
|
|
}
|
|
}
|
|
|
|
// assert that we did indeed create an op that has implementation
|
|
// otherwise schema and dispatch are not in sync
|
|
getOperation(n);
|
|
|
|
return packOutputs(*graph, n->outputs());
|
|
}
|
|
|
|
static std::string prefixLine(const std::string& str, std::string prefix) {
|
|
std::stringstream ss;
|
|
bool was_newline = true;
|
|
for(auto c : str) {
|
|
if(was_newline)
|
|
ss << prefix;
|
|
ss.put(c);
|
|
was_newline = c == '\n';
|
|
}
|
|
return ss.str();
|
|
}
|
|
|
|
std::shared_ptr<SugaredValue> emitBuiltinCall(
|
|
const SourceRange& loc,
|
|
Method& method,
|
|
const std::string & name,
|
|
at::ArrayRef<NamedValue> inputs,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
// if true, emitBuiltinCall will throw an exception if this builtin does not exist,
|
|
// otherwise it will return nullptr if the builtin is not found.
|
|
bool required) {
|
|
|
|
const auto& variants = getAllOperatorsFor(Symbol::aten(name));
|
|
std::stringstream failure_messages;
|
|
for (const std::shared_ptr<Operator>& op : variants) {
|
|
if (auto result = tryEmitBuiltin(
|
|
op, failure_messages, loc, method, name, inputs, attributes)) {
|
|
return result;
|
|
}
|
|
}
|
|
// none of the options worked
|
|
if(!required) {
|
|
return nullptr;
|
|
}
|
|
if(variants.size() == 0) {
|
|
throw ErrorReport(loc) << "unknown builtin op";
|
|
}
|
|
throw ErrorReport(loc) << "arguments for call are not valid:\n"
|
|
<< prefixLine(failure_messages.str(), " ")
|
|
<< "for call at";
|
|
}
|
|
|
|
static Value* ensureTensor(const SourceRange& range, Value* v) {
|
|
if(!isTensorSubtype(v)) {
|
|
throw ErrorReport(range) << "expected a tensor value but found a "
|
|
<< v->type()->str();
|
|
}
|
|
return v;
|
|
}
|
|
|
|
static Value* ensureInt(const SourceRange& range, Value* v) {
|
|
if(!v->type()->isSubtypeOf(IntType::get())) {
|
|
throw ErrorReport(range) << "expected a int but found a "
|
|
<< v->type()->str();
|
|
}
|
|
return v;
|
|
}
|
|
|
|
|
|
void ensureTensors(const SourceRange& range, at::ArrayRef<Value*> values) {
|
|
for(auto value : values) {
|
|
ensureTensor(range, value);
|
|
}
|
|
}
|
|
|
|
static Value* identity(const SourceRange& range, Value* v) {
|
|
return v;
|
|
}
|
|
|
|
|
|
std::shared_ptr<SugaredValue> BuiltinFunction::call(
|
|
SourceRange loc,
|
|
Method & m,
|
|
at::ArrayRef<NamedValue> inputs_,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
size_t n_binders) {
|
|
std::vector<NamedValue> inputs;
|
|
if (value)
|
|
inputs.push_back(*value);
|
|
inputs.insert(inputs.end(), inputs_.begin(), inputs_.end());
|
|
return emitBuiltinCall(loc, m, name, inputs, attributes, true);
|
|
}
|
|
|
|
struct to_ir {
|
|
to_ir(
|
|
TypedDef typed_def,
|
|
FunctionTable& function_table,
|
|
const Resolver& resolver,
|
|
SugaredValuePtr self,
|
|
Method& method) // method being constructed
|
|
: method(method)
|
|
, graph(method.graph())
|
|
, def(typed_def.def)
|
|
, function_table(function_table)
|
|
, resolver(resolver)
|
|
, environment_stack(nullptr) {
|
|
pushFrame(graph->block());
|
|
|
|
std::vector<Argument> arguments, returns; // for schema
|
|
// inputs
|
|
auto it = def.params().begin();
|
|
auto end = def.params().end();
|
|
// Type annotations exclude explicitly typing the "self" parameter, so in the
|
|
// case that this is a method with self we expect one fewer parameter annotation
|
|
// than the number of parameters this Def takes.
|
|
auto expected_annotation_size = self ? def.params().size() - 1 : def.params().size();
|
|
if (typed_def.schema && typed_def.schema->arguments.size() != expected_annotation_size) {
|
|
throw ErrorReport(def.params().range()) << "Number of type annotations for"
|
|
<< " function parameters (" << typed_def.schema->arguments.size() << ")"
|
|
<< " does not match the number of parameters on the function ("
|
|
<< expected_annotation_size << ")!";
|
|
}
|
|
if(self) {
|
|
if(it == end)
|
|
throw ErrorReport(def.params().range()) << "methods must have a self argument";
|
|
environment_stack->setSugaredVar(def.range(), (*it).ident().name(), self);
|
|
++it;
|
|
}
|
|
size_t arg_annotation_idx = 0;
|
|
for(;it != end; ++it) {
|
|
auto& name = (*it).ident().name();
|
|
// Add the input to the graph
|
|
Value *new_input = graph->addInput(name);
|
|
environment_stack->setVar((*it).ident().range(), name, new_input);
|
|
|
|
// Record the type for the schema and set the Type on the Value*
|
|
// TypePtr arg_type = DynamicType::get();
|
|
if (typed_def.schema) {
|
|
arguments.push_back(typed_def.schema->arguments.at(arg_annotation_idx++));
|
|
} else {
|
|
arguments.emplace_back(name, DynamicType::get());
|
|
}
|
|
new_input->setType(arguments.back().type);
|
|
}
|
|
// body
|
|
auto stmts = def.statements();
|
|
auto stmts_begin = stmts.begin();
|
|
auto stmts_end = stmts.end();
|
|
bool has_return = false;
|
|
if (stmts_begin != stmts_end && (*std::prev(stmts_end)).kind() == TK_RETURN) {
|
|
--stmts_end;
|
|
has_return = true;
|
|
}
|
|
|
|
emitStatements(stmts_begin, stmts_end);
|
|
|
|
// outputs
|
|
if (has_return) {
|
|
auto return_stmt = Return(*stmts_end);
|
|
auto results = getValues(return_stmt.values(), true, identity);
|
|
// a single return value that is a tuple expands in place:
|
|
// return a
|
|
if (return_stmt.values().size() == 1 && results.size() == 1) {
|
|
auto result = results.at(0);
|
|
if(result->type()->cast<TupleType>()) {
|
|
results = createTupleUnpack(result);
|
|
}
|
|
}
|
|
if (typed_def.schema && typed_def.schema->returns.size() != results.size()) {
|
|
throw ErrorReport(def.range()) << "Number of type annotations for function"
|
|
<< " return (" << typed_def.schema->returns.size() << ") does not match"
|
|
<< " the number of returns from the function (" << results.size() << ")!";
|
|
}
|
|
auto range = return_stmt.range();
|
|
size_t return_type_idx = 0;
|
|
for (auto& r : results) {
|
|
if(r->type()->isSubtypeOf(NumberType::get())) {
|
|
graph->registerOutput(numToTensor(range, r));
|
|
} else {
|
|
ensureTensor(range, r);
|
|
graph->registerOutput(r);
|
|
}
|
|
TypePtr type = DynamicType::get();
|
|
if (typed_def.schema) {
|
|
type = typed_def.schema->returns.at(return_type_idx).type;
|
|
if (!r->type()->isSubtypeOf(type)) {
|
|
throw ErrorReport(return_stmt.range()) << "Return value at position "
|
|
<< return_type_idx << " was annotated as having type " << type->str()
|
|
<< " but is actually of type " << r->type()->str();
|
|
}
|
|
return_type_idx++;
|
|
}
|
|
returns.push_back({"", type});
|
|
}
|
|
}
|
|
|
|
method.setSchema({def.name().name(), std::move(arguments), std::move(returns)});
|
|
// remove any uses of tuples that we inserted
|
|
LowerTuples(graph);
|
|
}
|
|
|
|
private:
|
|
Method& method;
|
|
std::shared_ptr<Graph> graph;
|
|
Def def;
|
|
FunctionTable& function_table;
|
|
const Resolver& resolver;
|
|
|
|
// Singly-linked list of environments. This top element contains a member
|
|
// `next` that points to the most immediate enclosing scope's value.
|
|
std::shared_ptr<Environment> environment_stack;
|
|
|
|
void pushFrame(Block * b) {
|
|
environment_stack = std::make_shared<Environment>(method, resolver, b, environment_stack);
|
|
}
|
|
std::shared_ptr<Environment> popFrame() {
|
|
auto old_frame = environment_stack;
|
|
environment_stack = environment_stack->next;
|
|
return old_frame;
|
|
}
|
|
void emitStatements(const List<Stmt>& statements) {
|
|
return emitStatements(statements.begin(), statements.end());
|
|
}
|
|
void emitStatements(List<Stmt>::const_iterator begin, List<Stmt>::const_iterator end) {
|
|
for (; begin != end; ++begin) {
|
|
auto stmt = *begin;
|
|
switch (stmt.kind()) {
|
|
case TK_IF:
|
|
emitIf(If(stmt));
|
|
break;
|
|
case TK_WHILE:
|
|
emitWhile(While(stmt));
|
|
break;
|
|
case TK_FOR:
|
|
emitFor(For(stmt));
|
|
break;
|
|
case TK_ASSIGN:
|
|
emitAssignment(Assign(stmt));
|
|
break;
|
|
case TK_GLOBAL:
|
|
for (auto ident : Global(stmt).names()) {
|
|
const auto& name = Ident(ident).name();
|
|
environment_stack->setVar(ident.range(), name, graph->addInput(name));
|
|
}
|
|
break;
|
|
case TK_EXPR_STMT: {
|
|
auto exprs = ExprStmt(stmt).exprs();
|
|
for (const auto& expr : exprs) {
|
|
emitSugaredExpr(expr, 0);
|
|
}
|
|
}
|
|
break;
|
|
case TK_RETURN:
|
|
throw ErrorReport(stmt) << "return statements can appear only at the end "
|
|
<< "of the function body";
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::shared_ptr<Environment> emitSingleIfBranch(
|
|
Block* b,
|
|
const List<Stmt> branch) {
|
|
pushFrame(b);
|
|
WithInsertPoint guard(b);
|
|
emitStatements(branch);
|
|
return popFrame();
|
|
}
|
|
|
|
Node* create(Symbol kind, const SourceRange& loc, size_t n_outputs) {
|
|
return graph
|
|
->create(kind, n_outputs)
|
|
->setSourceLocation(std::make_shared<SourceRange>(loc));
|
|
}
|
|
|
|
Value* emitTernaryIf(const TernaryIf& expr) {
|
|
Value* cond_value = emitCond(expr.cond());
|
|
|
|
Node* n = graph->insertNode(create(prim::If, expr.range(), 0));
|
|
|
|
n->addInput(cond_value);
|
|
auto* true_block = n->addBlock();
|
|
auto* false_block = n->addBlock();
|
|
|
|
|
|
auto emit_if_expr = [this](Block* b, const Expr& expr) {
|
|
pushFrame(b);
|
|
WithInsertPoint guard(b);
|
|
Value* out_val = emitExpr(expr);
|
|
b->registerOutput(out_val);
|
|
popFrame();
|
|
};
|
|
|
|
emit_if_expr(true_block, expr.true_expr());
|
|
emit_if_expr(false_block, expr.false_expr());
|
|
|
|
auto true_type = unshapedType(true_block->outputs().at(0)->type());
|
|
auto false_type = unshapedType(false_block->outputs().at(0)->type());
|
|
if (*true_type != *false_type) {
|
|
throw ErrorReport(expr)
|
|
<< "if-expression's true branch has type " << true_type->str()
|
|
<< " but false branch has type " << false_type->str();
|
|
}
|
|
|
|
// Add op outputs
|
|
auto expr_value = n->addOutput()->setType(true_type); // Resulting value
|
|
|
|
return expr_value;
|
|
}
|
|
|
|
Value* emitCond(Expr cond) {
|
|
Value* v = emitExpr(cond, identity);
|
|
if(v->type()->isSubtypeOf(DynamicType::get())) {
|
|
v = tensorToNum(cond.range(), v, IntType::get());
|
|
}
|
|
if(!v->type()->isSubtypeOf(IntType::get())) {
|
|
throw ErrorReport(cond) << "expected a tensor or integer expression for condition but found " << v->type()->str();
|
|
}
|
|
return v;
|
|
}
|
|
|
|
void emitIf(const If& stmt) {
|
|
Value* cond_value = emitCond(stmt.cond());
|
|
|
|
Node* n = graph->insertNode(create(prim::If, stmt.range(), 0));
|
|
n->addInput(cond_value);
|
|
auto* true_block = n->addBlock();
|
|
auto* false_block = n->addBlock();
|
|
|
|
// Emit both blocks once to get the union of all mutated values
|
|
auto save_true = emitSingleIfBranch(true_block, stmt.trueBranch());
|
|
auto save_false = emitSingleIfBranch(false_block, stmt.falseBranch());
|
|
|
|
// In python, every variable assigned in an if statement escapes
|
|
// the scope of the if statement (all variables are scoped to the function).
|
|
// Script is a subset of python: we consider variables to be in scope
|
|
// as long as there is a definition of the variable along all paths
|
|
// through the if statemnent
|
|
// ----
|
|
// if ...:
|
|
// a =
|
|
// else:
|
|
// ...
|
|
// ... = a # error, a is not defined along all paths
|
|
// ----
|
|
// if ...:
|
|
// a =
|
|
// else:
|
|
// a =
|
|
// ... = a # OK, a is defined along all paths
|
|
// ----
|
|
// a = ...
|
|
// if ...:
|
|
// a =
|
|
// ... = a # OK, a is defined along all paths
|
|
|
|
|
|
//ordered set, because we want deterministic graph output
|
|
std::set<std::string> mutated_variables;
|
|
|
|
for(auto & v : save_true->definedVariables()) {
|
|
if(save_false->findInAnyFrame(v)) {
|
|
mutated_variables.insert(v);
|
|
}
|
|
}
|
|
for(auto & v : save_false->definedVariables()) {
|
|
if(save_true->findInAnyFrame(v)) {
|
|
mutated_variables.insert(v);
|
|
}
|
|
}
|
|
|
|
// Register outputs in each block
|
|
for (const auto& x : mutated_variables) {
|
|
auto tv = save_true->getVar(x, stmt.range());
|
|
true_block->registerOutput(tv);
|
|
auto fv = save_false->getVar(x, stmt.range());
|
|
false_block->registerOutput(fv);
|
|
environment_stack->setVar(stmt.range(), x, n->addOutput()->setType(tv->type()));
|
|
}
|
|
|
|
}
|
|
|
|
// *********************** Loop Operators ************************************
|
|
// Emits a loop operators conforming to the semantics specified at
|
|
// https://github.com/onnx/onnx/blob/master/docs/Operators.md#experimental-loop
|
|
// TODO: implement scan_outputs
|
|
|
|
// the format of the Loop instruction is:
|
|
// loop_carried_outputs* = Loop(max_trip_count, start_condition,
|
|
// loop_carried_inputs*)
|
|
// block0(loop_counter, loop_carried_block*) {
|
|
// <body>
|
|
// -> (continue_condition,
|
|
// loop_carried_block_outputs*)
|
|
// }
|
|
// all loop_carried_... lists are the same length and represent the value of
|
|
// loop-carried variables whose definitions are updated as the loop executes
|
|
// in a way that ensure single static assignment.
|
|
|
|
|
|
void emitLoopCommon(
|
|
SourceRange range,
|
|
at::optional<Expr> max_trip_count,
|
|
at::optional<Expr> cond,
|
|
const List<Stmt>& body,
|
|
at::optional<Ident> itr_ident) {
|
|
Node* n = graph->insertNode(create(prim::Loop, range, 0));
|
|
Value *max_trip_count_val, *cond_val;
|
|
{
|
|
WithInsertPoint guard(n);
|
|
if (max_trip_count) {
|
|
max_trip_count_val = emitExpr(max_trip_count.value(), ensureInt);
|
|
} else {
|
|
max_trip_count_val =
|
|
insertConstant(*graph, INT_MAX, range);
|
|
}
|
|
if (cond) {
|
|
cond_val = emitCond(cond.value());
|
|
} else {
|
|
cond_val = insertConstant(*graph, true, range);
|
|
}
|
|
}
|
|
n->addInput(max_trip_count_val);
|
|
n->addInput(cond_val);
|
|
auto* body_block = n->addBlock();
|
|
Value* trip_count = body_block->addInput()->setType(IntType::get()); // Iteration num
|
|
|
|
{
|
|
pushFrame(body_block);
|
|
if (itr_ident) {
|
|
environment_stack->setVar(itr_ident->range(), itr_ident->name(), trip_count);
|
|
}
|
|
WithInsertPoint guard(body_block);
|
|
emitStatements(body);
|
|
|
|
// Also emit the conditional
|
|
if (cond) {
|
|
Value* body_cond_value = emitCond(cond.value());
|
|
body_block->registerOutput(body_cond_value);
|
|
} else {
|
|
Value* cond_value_dummy = insertConstant(*graph, true, range);
|
|
body_block->registerOutput(cond_value_dummy);
|
|
}
|
|
|
|
auto body_frame = popFrame();
|
|
auto outer_frame = environment_stack;
|
|
|
|
// Add block outputs to correspond to each captured input
|
|
// some of these will be removed.
|
|
for (const auto& x : body_frame->captured_inputs) {
|
|
auto fv = body_frame->getValueInThisFrame(range, x);
|
|
body_block->registerOutput(fv);
|
|
}
|
|
|
|
// Remove inputs for values that did not mutate within the
|
|
// block
|
|
body_frame->deleteExtraInputs(range);
|
|
|
|
// register node inputs/outputs for the true loop carried deps,
|
|
for(size_t i = 0; i < body_frame->captured_inputs.size(); ++i) {
|
|
auto x = body_frame->captured_inputs[i];
|
|
n->addInput(outer_frame->getVar(x, range));
|
|
// body_block->inputs(): loop_counter, lcd0, lcd1, ...
|
|
// captured_inputs: lcd0, lcd1, ...
|
|
auto typ = body_block->inputs()[i + 1]->type();
|
|
outer_frame->setVar(range, x, n->addOutput()->setType(typ));
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
void emitForRange(SourceRange range, const Ident& target, const List<Expr>& args, const List<Stmt>& body) {
|
|
// TODO: start, stop, step loop
|
|
if (args.size() != 1) {
|
|
throw ErrorReport(range)
|
|
<< "range() expects 1 argument but got " << args.size();
|
|
}
|
|
emitLoopCommon(range, {args[0]}, {}, body, target);
|
|
}
|
|
|
|
void emitFor(const For& stmt) {
|
|
// For now, we only support range loops. e.g. for i in range(3): ...
|
|
auto targets = stmt.targets();
|
|
auto itrs = stmt.itrs();
|
|
auto body = stmt.body();
|
|
|
|
if (stmt.itrs().size() != 1) {
|
|
throw ErrorReport(stmt)
|
|
<< "List of iterables is not supported currently.";
|
|
}
|
|
if (targets.size() != 1) {
|
|
throw ErrorReport(stmt) << "Iteration variable unpacking is not supported";
|
|
}
|
|
|
|
if (targets[0].kind() != TK_VAR) {
|
|
throw ErrorReport(targets[0]) << "Starred unpacking is currently not"
|
|
<< " supported for for loops.";
|
|
}
|
|
auto target = Var(targets[0]).name();
|
|
|
|
// match range(<expr>) style loops
|
|
// itrs must consist of a single Apply node
|
|
if (itrs[0].kind() == TK_APPLY) {
|
|
Apply range_iterator = Apply(itrs[0]);
|
|
if (range_iterator.callee().kind() == TK_VAR) {
|
|
Var var = Var(range_iterator.callee());
|
|
if (var.name().name() == "range") {
|
|
return emitForRange(stmt.range(), target, range_iterator.inputs(), body);
|
|
}
|
|
}
|
|
}
|
|
|
|
// it isn't a range(<expr>) loop, treat it as a sugared value that maybe can be
|
|
// unrolled
|
|
auto sv = emitSugaredExpr(itrs[0], 1);
|
|
auto instances = sv->asTuple(stmt.range(), method);
|
|
const std::string& target_name = target.name();
|
|
pushFrame(environment_stack->block());
|
|
for(auto inst : instances) {
|
|
environment_stack->setSugaredVar(itrs[0].range(), target_name, inst);
|
|
emitStatements(body);
|
|
}
|
|
|
|
for (const auto & n : environment_stack->definedVariables()) {
|
|
if (environment_stack->findInParentFrame(n)) {
|
|
environment_stack->next->setVar(stmt.range(), n, environment_stack->getVar(n, stmt.range()));
|
|
}
|
|
}
|
|
popFrame();
|
|
}
|
|
|
|
void emitWhile(const While& stmt) {
|
|
auto cond = stmt.cond();
|
|
emitLoopCommon(stmt.range(), {}, {cond}, stmt.body(), {});
|
|
}
|
|
|
|
// Validate that the `lhs` Expr's in an assignment statement are valid. That
|
|
// is:
|
|
//
|
|
// 1) All lhs Expr's are either Var or Starred nodes
|
|
// 2) There is at most one Starred node in the lhs Expr
|
|
// 3) A Starred node can only appear when there is another non-Starred lhs Expr
|
|
// Concretely this means that `*abc = func()` is illegal. Unpacking all
|
|
// outputs into a tuple is covered by `abc = func()`.
|
|
bool calcNumStarredUnpack(const List<Expr>& lhs, const SourceRange& r) {
|
|
size_t num_normal_assign = 0;
|
|
size_t num_starred = 0;
|
|
for (const auto& assignee : lhs) {
|
|
if (assignee.kind() == TK_VAR) {
|
|
num_normal_assign++;
|
|
} else if (assignee.kind() == TK_STARRED) {
|
|
num_starred++;
|
|
} else {
|
|
throw ErrorReport(assignee)
|
|
<< "lhs of assignment must be a variable or starred expression.";
|
|
}
|
|
}
|
|
|
|
if (num_starred > 1) {
|
|
throw ErrorReport(r)
|
|
<< "Only one starred expression is allowed on the lhs.";
|
|
}
|
|
|
|
if (num_starred > 0 && num_normal_assign == 0) {
|
|
throw ErrorReport(r) << "A Starred expression may only appear on the "
|
|
<< "lhs within the presence of another non-starred"
|
|
<< " expression.";
|
|
}
|
|
|
|
return num_starred;
|
|
}
|
|
|
|
void emitAssignment(const Assign& stmt) {
|
|
bool starred_unpack = calcNumStarredUnpack(stmt.lhs(), stmt.range());
|
|
if (stmt.reduction() != '=') {
|
|
if (stmt.lhs().size() != 1) {
|
|
throw ErrorReport(stmt)
|
|
<< "reductions are only allowed when there is a single variable "
|
|
<< "on the left-hand side.";
|
|
}
|
|
Ident lhs = Var(stmt.lhs()[0]).name();
|
|
Expr expr = BinOp::create(stmt.range(), stmt.reduction(),
|
|
Var::create(lhs.range(), lhs), stmt.rhs());
|
|
environment_stack->setVar(lhs.range(), lhs.name(), emitExpr(expr));
|
|
return;
|
|
}
|
|
|
|
// See [N_BINDERS]
|
|
size_t n_binders = stmt.lhs().size();
|
|
if(starred_unpack)
|
|
n_binders--;
|
|
|
|
auto output = emitSugaredExpr(stmt.rhs(), n_binders);
|
|
|
|
if(stmt.lhs().size() == 1) {
|
|
JIT_ASSERT(!starred_unpack);
|
|
auto v = Var(stmt.lhs()[0]);
|
|
environment_stack->setSugaredVar(v.range(), v.name().name(), output);
|
|
return;
|
|
}
|
|
|
|
auto outputs = output->asTuple(stmt.rhs().range(), method);
|
|
if(outputs.size() < n_binders) {
|
|
throw ErrorReport(stmt)
|
|
<< "need " << (starred_unpack ? "at least " : "")
|
|
<< n_binders << " values to unpack but found only "
|
|
<< outputs.size();
|
|
}
|
|
if(outputs.size() > n_binders && !starred_unpack) {
|
|
throw ErrorReport(stmt)
|
|
<< "too many values to unpack, need " << n_binders << " but found "
|
|
<< outputs.size();
|
|
}
|
|
int i = 0;
|
|
for (auto assignee : stmt.lhs()) {
|
|
if (assignee.kind() == TK_VAR) {
|
|
environment_stack->setSugaredVar(assignee.range(), Var(assignee).name().name(), outputs.at(i));
|
|
i++;
|
|
} else if (assignee.kind() == TK_STARRED) {
|
|
auto var = Starred(assignee).expr();
|
|
if (var.kind() != TK_VAR) {
|
|
throw ErrorReport(var) << "Cannot pack a tuple into a non-variable.";
|
|
}
|
|
size_t n_matched = outputs.size() - n_binders;
|
|
ArrayRef<std::shared_ptr<SugaredValue>> outputs_ref = outputs;
|
|
auto values = fmap(outputs_ref.slice(i, n_matched), [&](const std::shared_ptr<SugaredValue>& v) {
|
|
return v->asValue(assignee.range(), method);
|
|
});
|
|
auto tup = graph->insertNode(graph->createTuple(values))->output();
|
|
environment_stack->setVar(
|
|
var.range(), Var(var).name().name(), tup);
|
|
i += n_matched;
|
|
}
|
|
}
|
|
}
|
|
|
|
NodeKind getNodeKind(int kind, int ninputs) {
|
|
switch (kind) {
|
|
case '+':
|
|
return aten::add;
|
|
case '-':
|
|
return aten::sub;
|
|
case TK_UNARY_MINUS:
|
|
return aten::neg;
|
|
case '*':
|
|
return aten::mul;
|
|
case TK_POW:
|
|
return aten::pow;
|
|
case '@':
|
|
return aten::matmul;
|
|
case TK_STARRED:
|
|
return prim::Starred;
|
|
case '/':
|
|
return aten::div;
|
|
case TK_NE:
|
|
return aten::ne;
|
|
case TK_EQ:
|
|
return aten::eq;
|
|
case '<':
|
|
return aten::lt;
|
|
case '>':
|
|
return aten::gt;
|
|
case TK_LE:
|
|
return aten::le;
|
|
case TK_GE:
|
|
return aten::ge;
|
|
case TK_AND:
|
|
return aten::__and__;
|
|
case TK_OR:
|
|
return aten::__or__;
|
|
case TK_NOT:
|
|
return aten::__not__;
|
|
default:
|
|
throw std::runtime_error("unknown kind " + std::to_string(kind));
|
|
}
|
|
}
|
|
|
|
|
|
|
|
std::vector<NamedValue> getNamedValues(
|
|
TreeList trees,
|
|
bool maybe_unpack=false,
|
|
std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) {
|
|
std::vector<NamedValue> values;
|
|
size_t next_arg = 0;
|
|
for (const auto& tree : trees) {
|
|
if(maybe_unpack && tree->kind() == TK_STARRED) {
|
|
auto starred = Starred(tree);
|
|
auto entries = emitSugaredExpr(starred.expr(), 1)->asTuple(starred.range(), method);
|
|
for(auto entry : entries) {
|
|
values.push_back(NamedValue(
|
|
tree->range(),
|
|
next_arg++,
|
|
post_process(
|
|
starred.range(), entry->asValue(starred.range(), method))));
|
|
}
|
|
} else {
|
|
values.push_back(NamedValue(
|
|
tree->range(), next_arg++, emitExpr(Expr(tree), post_process)));
|
|
}
|
|
}
|
|
return values;
|
|
}
|
|
std::vector<NamedValue> getNamedValues(
|
|
List<Expr> trees,
|
|
bool maybe_unpack=false,
|
|
std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) {
|
|
return getNamedValues(trees.tree()->trees(), maybe_unpack, post_process);
|
|
}
|
|
|
|
std::vector<Value*> getValues(
|
|
TreeList trees,
|
|
bool maybe_unpack=false,
|
|
std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) {
|
|
return toValues(getNamedValues(trees, maybe_unpack, post_process));
|
|
}
|
|
std::vector<Value*> getValues(
|
|
List<Expr> trees,
|
|
bool maybe_unpack=false,
|
|
std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) {
|
|
return getValues(trees.tree()->trees(), maybe_unpack, post_process);
|
|
}
|
|
|
|
// special rules apply when we directly call foo(a,b) when foo is an ident
|
|
std::shared_ptr<SugaredValue> emitApplyIdent(Ident ident, const std::vector<NamedValue>& inputs, at::ArrayRef<NamedValue> attributes, size_t n_binders) {
|
|
auto it = function_table.find(ident.name());
|
|
if (it != function_table.end()) {
|
|
return packOutputs(*graph, method.emit_call_to(ident.range(), it->second, inputs, attributes));
|
|
}
|
|
if(auto result = emitBuiltinCall(ident.range(), method, ident.name(), inputs, attributes, false)) {
|
|
return result;
|
|
}
|
|
// it wasn't known built in, so treat it like standard apply
|
|
return emitApplyExpr(Var::create(ident.range(), ident), inputs, attributes, n_binders);
|
|
}
|
|
|
|
std::shared_ptr<SugaredValue> emitApplyExpr(Expr callee, const std::vector<NamedValue>& inputs, at::ArrayRef<NamedValue> attributes, size_t n_binders) {
|
|
// otherwise we evaluate the callee and then desugar it
|
|
auto sv = emitSugaredExpr(callee, 1);
|
|
return sv->call(callee.range(), method, inputs, attributes, n_binders);
|
|
}
|
|
|
|
Value* emitExpr(Expr tree, std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) {
|
|
return post_process(tree.range(), emitSugaredExpr(tree, 1)->asValue(tree.range(), method));
|
|
}
|
|
|
|
NodeKind reverseComparision(NodeKind kind) {
|
|
if (kind == aten::lt) {
|
|
return aten::gt;
|
|
} else if (kind == aten::le) {
|
|
return aten::ge;
|
|
} else if (kind == aten::gt) {
|
|
return aten::lt;
|
|
} else if (kind == aten::ge) {
|
|
return aten::le;
|
|
}
|
|
throw std::runtime_error("reverseComparision: unsupported NodeKind. File a bug");
|
|
}
|
|
|
|
// any expression that can produce a SugaredValue is handled here
|
|
// expressions that only return a single Value* are handled in emitSimpleExpr
|
|
std::shared_ptr<SugaredValue> emitSugaredExpr(Expr tree, size_t n_binders) {
|
|
switch(tree.kind()) {
|
|
case TK_VAR:
|
|
return environment_stack->getSugaredVar(Var(tree).name());
|
|
case '.': {
|
|
auto select = Select(tree);
|
|
auto sv = emitSugaredExpr(select.value(), 1);
|
|
return sv->attr(select.range(), method, select.selector().name());
|
|
}
|
|
case TK_APPLY: {
|
|
auto apply = Apply(tree);
|
|
auto inputs = getNamedValues(apply.inputs(), true, identity);
|
|
auto attributes = fmap(apply.attributes(), [&](const Attribute& attr) {
|
|
return NamedValue(attr.range(), attr.name().name(), emitExpr(attr.value(), identity));
|
|
});
|
|
// the apply is directly an identifier 'foo'
|
|
if(apply.callee().kind() == TK_VAR) {
|
|
return emitApplyIdent(Var(apply.callee()).name(), inputs, attributes, n_binders);
|
|
}
|
|
return emitApplyExpr(apply.callee(), inputs, attributes, n_binders);
|
|
} break;
|
|
default:
|
|
return std::make_shared<SimpleValue>(emitSimpleExpr(tree));
|
|
}
|
|
}
|
|
|
|
Value* emitSimpleExpr(
|
|
const TreeRef& tree) {
|
|
switch (tree->kind()) {
|
|
case '@':
|
|
case TK_POW:
|
|
case TK_AND:
|
|
case TK_OR:
|
|
case TK_NOT:
|
|
case TK_NE:
|
|
case TK_EQ:
|
|
case '<':
|
|
case '>':
|
|
case TK_LE:
|
|
case TK_GE:
|
|
case '*':
|
|
case '/':
|
|
case '+':
|
|
case '-':
|
|
case TK_UNARY_MINUS: {
|
|
const auto& inputs = tree->trees();
|
|
auto kind = getNodeKind(tree->kind(), inputs.size());
|
|
auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false, identity);
|
|
return emitBuiltinCall(
|
|
tree->range(),
|
|
method,
|
|
kind.toUnqualString(),
|
|
named_values,
|
|
{},
|
|
/*required=*/true)
|
|
->asValue(tree->range(), method);
|
|
}
|
|
case TK_STARRED: {
|
|
throw ErrorReport(tree) << "Unexpected starred expansion. File a bug report.";
|
|
}
|
|
case TK_CONST: {
|
|
return emitConst(Const(tree));
|
|
} break;
|
|
case TK_TRUE: {
|
|
return insertConstant(*graph, true, tree->range());
|
|
} break;
|
|
case TK_FALSE: {
|
|
return insertConstant(*graph, false, tree->range());
|
|
} break;
|
|
case TK_SLICE: {
|
|
const auto slice = Slice(tree);
|
|
return emitSlice(
|
|
slice.range(),
|
|
{slice.value(), slice.startOr(0), slice.endOr(-1)});
|
|
} break;
|
|
case TK_GATHER: {
|
|
const auto gather = Gather(tree);
|
|
return emitGather(
|
|
gather.range(), {gather.value(), gather.indices()});
|
|
} break;
|
|
case TK_IF_EXPR: {
|
|
return emitTernaryIf(TernaryIf(tree));
|
|
} break;
|
|
case TK_LIST_LITERAL: {
|
|
auto ll = ListLiteral(tree);
|
|
auto values = getValues(ll.inputs(), /*maybe_unpack=*/true, identity);
|
|
return graph->insertNode(graph->createTuple(values))->output();
|
|
} break;
|
|
default:
|
|
throw ErrorReport(tree) << "NYI: " << tree;
|
|
break;
|
|
}
|
|
}
|
|
|
|
Value* emitConst(const Const& c) {
|
|
if (c.isFloatingPoint())
|
|
return insertConstant(*graph, c.asFloatingPoint(), c.range());
|
|
else
|
|
return insertConstant(*graph, c.asIntegral(), c.range());
|
|
}
|
|
|
|
// Desugars slice syntactic sugar tensor[begin:end] -> tensor.slice(begin,
|
|
// end).
|
|
Value* emitSlice(
|
|
const SourceRange& loc,
|
|
TreeList&& inputs) {
|
|
const auto applyInputs =
|
|
Compound::create(TK_LIST, loc, std::move(inputs));
|
|
const auto input_values = getNamedValues(applyInputs->trees(),
|
|
/*maybe_unpack*/false,
|
|
identity);
|
|
NamedValue tensor = input_values[0];
|
|
NamedValue begin = input_values[1];
|
|
NamedValue end = input_values[2];
|
|
NamedValue dim = NamedValue(loc, "dim",
|
|
insertConstant(*graph, 0, loc));
|
|
NamedValue step = NamedValue(loc, "step",
|
|
insertConstant(*graph, 1, loc));
|
|
|
|
return emitBuiltinCall(
|
|
loc, method, "slice", {tensor, dim, begin, end, step}, {}, true)
|
|
->asValue(loc, method);
|
|
}
|
|
|
|
// Desugars gather syntactic sugar tensor[idx] -> tensor.select(idx).
|
|
Value* emitGather(
|
|
const SourceRange& loc,
|
|
TreeList&& inputs) {
|
|
const auto applyInputs =
|
|
Compound::create(TK_LIST, loc, std::move(inputs));
|
|
auto input_values = getNamedValues(applyInputs->trees(),
|
|
/*maybe_unpack*/false,
|
|
identity);
|
|
NamedValue tensor = input_values[0];
|
|
NamedValue dim = NamedValue(
|
|
loc,
|
|
"dim",
|
|
insertConstant(*graph, 0, loc));
|
|
NamedValue idx = input_values[1];
|
|
|
|
return emitBuiltinCall(loc, method, "select", {tensor, dim, idx}, {}, true)
|
|
->asValue(loc, method);
|
|
}
|
|
};
|
|
|
|
// support syntax sugar for x.foo(y, z) by allowing x.foo to return a
|
|
// callable value that will resolve to foo(x, y, z) when called.
|
|
std::shared_ptr<SugaredValue> SimpleValue::attr(SourceRange loc, Method & m, const std::string& field) {
|
|
return std::make_shared<BuiltinFunction>(field, NamedValue(loc, "self", value));
|
|
}
|
|
|
|
std::vector<Value*> inlineCallTo(Graph& g, Graph& callee, ArrayRef<Value*> inputs) {
|
|
std::unordered_map<Value*, Value*> value_map;
|
|
auto value_map_func = [&](Value* v) { return value_map.at(v); };
|
|
JIT_ASSERT(callee.inputs().size() == inputs.size());
|
|
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
value_map[callee.inputs()[i]] = inputs[i];
|
|
}
|
|
for (auto* node : callee.nodes()) {
|
|
auto* new_node =
|
|
g.insertNode(g.createClone(node, value_map_func));
|
|
for (size_t i = 0; i < node->outputs().size(); ++i) {
|
|
value_map[node->outputs()[i]] = new_node->outputs()[i];
|
|
}
|
|
}
|
|
|
|
std::vector<Value*> outputs;
|
|
for (auto* output : callee.outputs()) {
|
|
outputs.push_back(value_map_func(output));
|
|
}
|
|
return outputs;
|
|
}
|
|
|
|
void defineMethodsInModule(Module & m, const std::vector<TypedDef>& definitions, const std::vector<Resolver>& resolvers, SugaredValuePtr self) {
|
|
FunctionTable table;
|
|
JIT_ASSERT(definitions.size() == resolvers.size());
|
|
auto resolver_it = resolvers.begin();
|
|
std::vector<Method*> methods;
|
|
for(TypedDef typed_def : definitions) {
|
|
const std::string& name = typed_def.def.name().name();
|
|
Resolver resolver = *resolver_it++;
|
|
auto creator = [typed_def, &table, resolver, self](Method& method) {
|
|
to_ir(typed_def, table, resolver, self, method);
|
|
};
|
|
Method& method = m.create_method(name, creator);
|
|
// if self is defined, then these are methods and do not go into the global namespace
|
|
// otherwise, they get defined together so we add them to the function table
|
|
// so the methods can see each other
|
|
if(!self) {
|
|
auto result = table.emplace(name, method);
|
|
JIT_ASSERT(result.second);
|
|
}
|
|
methods.push_back(&method);
|
|
}
|
|
for(Method* method : methods) {
|
|
method->ensure_defined();
|
|
}
|
|
}
|
|
|
|
void defineMethodsInModule(Module & m, const std::string& source, const Resolver& resolver, SugaredValuePtr self) {
|
|
Parser p(source);
|
|
std::vector<TypedDef> definitions;
|
|
std::vector<Resolver> resolvers;
|
|
while (p.lexer().cur().kind != TK_EOF) {
|
|
// TODO: Function schema
|
|
definitions.emplace_back(Def(p.parseFunction()), at::nullopt);
|
|
resolvers.push_back(resolver);
|
|
}
|
|
defineMethodsInModule(m, definitions, resolvers, self);
|
|
}
|
|
|
|
std::shared_ptr<Graph> compileFunction(TypedDef typed_def, const Resolver& resolver) {
|
|
Module m;
|
|
defineMethodsInModule(m, {typed_def}, {resolver}, nullptr);
|
|
return m.get_method(typed_def.def.name().name()).graph();
|
|
}
|
|
|
|
std::vector<std::shared_ptr<SugaredValue>> SimpleValue::asTuple(SourceRange loc, Method& m) {
|
|
if(value->type()->kind() == TypeKind::TupleType) {
|
|
auto outputs = createTupleUnpack(value);
|
|
return fmap(outputs, [](Value* v) -> std::shared_ptr<SugaredValue> {
|
|
return std::make_shared<SimpleValue>(v);
|
|
});
|
|
}
|
|
throw ErrorReport(loc) << value->type()->str() << " cannot be used as a tuple";
|
|
}
|
|
|
|
void ensureSizeMatches(SourceRange loc, size_t expected, size_t actual, const std::string& what) {
|
|
if(expected != actual) {
|
|
throw ErrorReport(loc) << "expected " << expected << " " << what << " but found " << actual;
|
|
}
|
|
}
|
|
|
|
} // namespace script
|
|
} // namespace jit
|
|
} // namespace torch
|