mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90477 Approved by: https://github.com/zou3519
197 lines
8.6 KiB
Python
197 lines
8.6 KiB
Python
from typing import Dict, Union, Any, Tuple, List
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch import Tensor
|
|
from torch._functorch.utils import exposed_in
|
|
|
|
|
|
@exposed_in("torch.func")
|
|
def functional_call(
|
|
module: 'torch.nn.Module',
|
|
parameter_and_buffer_dicts: Union[Dict[str, Tensor], Tuple[Dict[str, Tensor], ...]],
|
|
args: Union[Any, Tuple],
|
|
kwargs: Dict[str, Any] = None,
|
|
*,
|
|
tie_weights: bool = True,
|
|
):
|
|
r"""Performs a functional call on the module by replacing the module parameters
|
|
and buffers with the provided ones.
|
|
|
|
.. note:: If the module has active parametrizations, passing a value in the
|
|
:attr:`parameters_and_buffers` argument with the name set to the regular parameter
|
|
name will completely disable the parametrization.
|
|
If you want to apply the parametrization function to the value passed
|
|
please set the key as ``{submodule_name}.parametrizations.{parameter_name}.original``.
|
|
|
|
.. note:: If the module performs in-place operations on parameters/buffers, these will be reflected
|
|
in the ``parameters_and_buffers`` input.
|
|
|
|
|
|
Example::
|
|
|
|
>>> a = {'foo': torch.zeros(())}
|
|
>>> # xdoctest: +SKIP
|
|
>>> mod = Foo() # does self.foo = self.foo + 1
|
|
>>> print(mod.foo) # tensor(0.)
|
|
>>> functional_call(mod, a, torch.ones(()))
|
|
>>> print(mod.foo) # tensor(0.)
|
|
>>> print(a['foo']) # tensor(1.)
|
|
|
|
.. note:: If the module has tied weights, whether or not functional_call respects the tying is determined by the
|
|
tie_weights flag.
|
|
|
|
Example::
|
|
|
|
>>> a = {'foo': torch.zeros(())}
|
|
>>> # xdoctest: +SKIP
|
|
>>> mod = Foo() # has both self.foo and self.foo_tied which are tied. Returns x + self.foo + self.foo_tied
|
|
>>> print(mod.foo) # tensor(1.)
|
|
>>> mod(torch.zeros(())) # tensor(2.)
|
|
>>> functional_call(mod, a, torch.zeros(())) # tensor(0.) since it will change self.foo_tied too
|
|
>>> functional_call(mod, a, torch.zeros(()), tie_weights=False) # tensor(1.)--self.foo_tied is not updated
|
|
>>> new_a = {'foo', torch.zeros(()), 'foo_tied': torch.zeros(())}
|
|
>>> functional_call(mod, new_a, torch.zeros()) # tensor(0.)
|
|
|
|
An example of passing mutliple dictionaries
|
|
|
|
.. code-block:: python
|
|
|
|
a = ({'weight': torch.ones(1, 1)}, {'buffer': torch.zeros(1)}) # two separate dictionaries
|
|
mod = nn.Bar(1, 1) # return self.weight @ x + self.buffer
|
|
print(mod.weight) # tensor(...)
|
|
print(mod.buffer) # tensor(...)
|
|
x = torch.randn((1, 1))
|
|
print(x)
|
|
functional_call(mod, a, x) # same as x
|
|
print(mod.weight) # same as before functional_call
|
|
|
|
|
|
And here is an example of applying the grad transform over the parameters
|
|
of a model.
|
|
|
|
.. code-block:: python
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.func import functional_call, grad
|
|
|
|
x = torch.randn(4, 3)
|
|
t = torch.randn(4, 3)
|
|
model = nn.Linear(3, 3)
|
|
|
|
def compute_loss(params, x, t):
|
|
y = functional_call(model, params, x)
|
|
return nn.functional.mse_loss(y, t)
|
|
|
|
grad_weights = grad(compute_loss)(dict(model.named_parameters()), x, t)
|
|
|
|
.. note:: If the user does not need grad tracking outside of grad transforms, they can detach all of the
|
|
parameters for better performance and memory usage
|
|
|
|
Example::
|
|
|
|
>>> detached_params = {k: v.detach() for k, v in model.named_parameters()}
|
|
>>> grad_weights = grad(compute_loss)(detached_params, x, t)
|
|
>>> grad_weights.grad_fn # None--it's not tracking gradients outside of grad
|
|
|
|
This means that the user cannot call ``grad_weight.backward()``. However, if they don't need autograd tracking
|
|
outside of the transforms, this will result in less memory usage and faster speeds.
|
|
|
|
Args:
|
|
module (torch.nn.Module): the module to call
|
|
parameters_and_buffers (Dict[str,Tensor] or tuple of Dict[str, Tensor]): the parameters that will be used in
|
|
the module call. If given a tuple of dictionaries, they must have distinct keys so that all dictionaries can
|
|
be used together
|
|
args (Any or tuple): arguments to be passed to the module call. If not a tuple, considered a single argument.
|
|
kwargs (dict): keyword arguments to be passed to the module call
|
|
tie_weights (bool, optional): If True, then parameters and buffers tied in the original model will be treated as
|
|
tied in the reparamaterized version. Therefore, if True and different values are passed for the tied
|
|
paramaters and buffers, it will error. If False, it will not respect the originally tied parameters and
|
|
buffers unless the values passed for both weights are the same. Default: True.
|
|
|
|
Returns:
|
|
Any: the result of calling ``module``.
|
|
"""
|
|
parameters_and_buffers = parameter_and_buffer_dicts if isinstance(parameter_and_buffer_dicts, dict) else {}
|
|
if isinstance(parameter_and_buffer_dicts, tuple):
|
|
key_list = [i for dct in parameter_and_buffer_dicts for i in dct.keys()]
|
|
key_set = set(key_list)
|
|
if len(key_set) != len(key_list):
|
|
repeated_key = list(filter(lambda key: key_list.count(key) > 1, key_set))[0]
|
|
raise ValueError(f"{repeated_key} appeared in multiple dictionaries; behavior of functional call is ambiguous")
|
|
|
|
parameters_and_buffers = {k: v for d in parameter_and_buffer_dicts for k, v in d.items()}
|
|
|
|
return nn.utils.stateless.functional_call(module, parameters_and_buffers, args, kwargs, tie_weights=tie_weights)
|
|
|
|
|
|
@exposed_in("torch.func")
|
|
def stack_module_state(models: List[nn.Module]) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
|
"""stack_module_state(models) -> params, buffers
|
|
|
|
Prepares a list of torch.nn.Modules for ensembling with :func:`vmap`.
|
|
|
|
Given a list of ``M`` ``nn.Modules`` of the same class, returns two dictionaries
|
|
that stack all of their parameters and buffers together, indexed by name.
|
|
|
|
Here's an example of how to ensemble over a very simple model:
|
|
|
|
.. code-block:: python
|
|
|
|
num_models = 5
|
|
batch_size = 64
|
|
in_features, out_features = 3, 3
|
|
models = [torch.nn.Linear(in_features, out_features) for i in range(num_models)]
|
|
data = torch.randn(batch_size, 3)
|
|
|
|
def wrapper(params, buffers, data):
|
|
return torch.func.functional_call(model[0], (params, buffers), data)
|
|
|
|
params, buffers = stack_module_state(models)
|
|
output = vmap(wrapper, (0, 0, None))(params, buffers, data)
|
|
|
|
assert output.shape == (num_models, batch_size, out_features)
|
|
|
|
When there's submodules, this follows state dict naming conventions
|
|
|
|
.. code-block:: python
|
|
|
|
import torch.nn as nn
|
|
class Foo(nn.Module):
|
|
def __init__(self, in_features, out_features):
|
|
super().__init__()
|
|
hidden = 4
|
|
self.l1 = nn.Linear(in_features, hidden)
|
|
self.l2 = nn.Linear(hidden, out_features)
|
|
|
|
def forward(self, x):
|
|
return self.l2(self.l1(x))
|
|
|
|
num_models = 5
|
|
in_features, out_features = 3, 3
|
|
models = [Foo(in_features, out_features) for i in range(num_models)]
|
|
params, buffers = stack_module_state(models)
|
|
print(list(params.keys())) # "l1.weight", "l1.bias", "l2.weight", "l2.bias"
|
|
|
|
.. warning::
|
|
All of the modules being stacked together must be the same (except for
|
|
the values of their parameters/buffers). For example, they should be in the
|
|
same mode (training vs eval).
|
|
"""
|
|
if len(models) == 0:
|
|
raise RuntimeError('stack_module_state: Expected at least one model, got 0.')
|
|
if not (all(m.training for m in models) or all(not m.training for m in models)):
|
|
raise RuntimeError('stack_module_state: Expected all models to '
|
|
'have the same training/eval mode.')
|
|
model0_typ = type(models[0])
|
|
if not all(type(m) == model0_typ for m in models):
|
|
raise RuntimeError('stack_module_state: Expected all models to '
|
|
'be of the same class.')
|
|
all_params = [{k: v for k, v in model.named_parameters()} for model in models]
|
|
params = {k: torch.stack(tuple(params[k] for params in all_params)) for k in all_params[0]}
|
|
all_buffers = [{k: v for k, v in model.named_buffers()} for model in models]
|
|
buffers = {k: torch.stack(tuple(buffers[k] for buffers in all_buffers)) for k in all_buffers[0]}
|
|
|
|
return params, buffers
|