mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90477 Approved by: https://github.com/zou3519
433 lines
18 KiB
Python
433 lines
18 KiB
Python
# Owner(s): ["module: nn"]
|
|
|
|
import unittest
|
|
import sys
|
|
import os
|
|
import subprocess
|
|
|
|
import torch
|
|
|
|
import torch.nn.utils.stateless as stateless
|
|
from torch.testing._internal.common_cuda import TEST_MULTIGPU
|
|
from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \
|
|
subtest
|
|
|
|
|
|
class MockModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.l1 = torch.nn.Linear(1, 1)
|
|
self.register_buffer('buffer', torch.ones(1))
|
|
|
|
def forward(self, x):
|
|
return self.l1(x) + self.buffer
|
|
|
|
class MockTiedModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.l1 = torch.nn.Linear(1, 1)
|
|
self.tied_bias = self.l1.bias
|
|
self.register_buffer('buffer', torch.ones(1))
|
|
self.register_buffer('tied_buffer', self.buffer)
|
|
|
|
def forward(self, x):
|
|
return self.l1(x) + self.tied_bias + self.buffer + self.tied_buffer
|
|
|
|
|
|
class TestStatelessFunctionalAPI(TestCase):
|
|
def _run_call_with_mock_module(self, module, functional_call, device='cpu', prefix=''):
|
|
|
|
x = torch.rand((1, 1)).to(device)
|
|
weight = torch.tensor([[1.0]], device=device)
|
|
bias = torch.tensor([0.0], device=device)
|
|
buffer = torch.tensor([0.0], device=device)
|
|
if prefix != '':
|
|
parameters = {f'{prefix}.l1.weight': weight,
|
|
f'{prefix}.l1.bias': bias,
|
|
f'{prefix}.buffer': buffer}
|
|
else:
|
|
parameters = {'l1.weight': weight,
|
|
'l1.bias': bias,
|
|
'buffer': buffer}
|
|
to_check = module
|
|
if prefix != '':
|
|
to_check = getattr(module, prefix)
|
|
prev_weight = to_check.l1.weight.clone()
|
|
prev_buffer = to_check.buffer.clone()
|
|
# the parameters represent an identity function contrary to the
|
|
# existing params in module. So here we expect the result to be the
|
|
# same as the input if the weight swapping went well.
|
|
res = functional_call(module, parameters, x)
|
|
self.assertEqual(x, res)
|
|
# check that the weight remain unmodified
|
|
cur_weight = to_check.l1.weight
|
|
cur_buffer = to_check.buffer
|
|
self.assertEqual(cur_weight, prev_weight)
|
|
self.assertEqual(cur_buffer, prev_buffer)
|
|
|
|
@parametrize("functional_call", [
|
|
subtest(torch.func.functional_call, "torch_func"),
|
|
subtest(stateless.functional_call, "stateless")
|
|
])
|
|
def test_functional_call(self, functional_call):
|
|
module = MockModule()
|
|
self._run_call_with_mock_module(module, functional_call)
|
|
|
|
@parametrize("functional_call", [
|
|
subtest(torch.func.functional_call, "torch_func"),
|
|
subtest(stateless.functional_call, "stateless")
|
|
])
|
|
def test_functional_call_with_jit(self, functional_call):
|
|
module = MockModule()
|
|
jit_module = torch.jit.script(module)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r'used with Jitted modules'
|
|
):
|
|
self._run_call_with_mock_module(jit_module, functional_call)
|
|
x = torch.rand((1, 1))
|
|
traced_module = torch.jit.trace(module, x)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r'used with Jitted modules'
|
|
):
|
|
self._run_call_with_mock_module(traced_module, functional_call)
|
|
|
|
@unittest.skipIf(not TEST_MULTIGPU, 'multi-GPU not supported')
|
|
@unittest.skip("This doesn't work right now")
|
|
@parametrize("functional_call", [
|
|
subtest(torch.func.functional_call, "torch_func"),
|
|
subtest(stateless.functional_call, "stateless")
|
|
])
|
|
def test_functional_call_with_data_parallel(self, functional_call):
|
|
module = MockModule()
|
|
module.cuda()
|
|
dp_module = torch.nn.DataParallel(module, [0, 1])
|
|
self._run_call_with_mock_module(dp_module, functional_call, device='cuda', prefix='module')
|
|
|
|
@parametrize("functional_call", [
|
|
subtest(torch.func.functional_call, "torch_func"),
|
|
subtest(stateless.functional_call, "stateless")
|
|
])
|
|
def test_functional_call_with_gradient(self, functional_call):
|
|
module = MockModule()
|
|
x = torch.rand((1, 1))
|
|
weight = torch.tensor([[1.0]], requires_grad=True)
|
|
bias = torch.tensor([0.0], requires_grad=True)
|
|
buffer = torch.tensor([0.0])
|
|
parameters = {'l1.weight': weight,
|
|
'l1.bias': bias,
|
|
'buffer': buffer}
|
|
res = functional_call(module, parameters, x)
|
|
# Check that a backward step calculates the gradient of the supplied parameters
|
|
res.backward()
|
|
self.assertIsNotNone(weight.grad)
|
|
self.assertIsNotNone(bias.grad)
|
|
self.assertIsNone(buffer.grad)
|
|
# Gradient was not calculated for the module stated and buffers
|
|
self.assertIsNone(module.l1.weight.grad)
|
|
self.assertIsNone(module.l1.bias.grad)
|
|
self.assertIsNone(module.buffer.grad)
|
|
|
|
@parametrize("functional_call", [
|
|
subtest(torch.func.functional_call, "torch_func"),
|
|
subtest(stateless.functional_call, "stateless")
|
|
])
|
|
def test_functional_batch_norm(self, functional_call):
|
|
module = torch.nn.BatchNorm1d(10)
|
|
module.train() # Allow stats update
|
|
# lets replace the running_mean buffer and check if its correctly updated
|
|
x = torch.full((20, 10), 128.0)
|
|
rm = torch.zeros(10)
|
|
parameters = {'running_mean': rm}
|
|
prev_rm = module.running_mean.clone()
|
|
res = functional_call(module, parameters, x)
|
|
cur_rm = module.running_mean
|
|
self.assertEqual(cur_rm, prev_rm)
|
|
self.assertEqual(rm, torch.full((10,), 12.8))
|
|
# Now run functional without reparametrization and check that the module has
|
|
# been updated
|
|
res = functional_call(module, {}, x)
|
|
self.assertEqual(module.running_mean, torch.full((10,), 12.8))
|
|
|
|
@parametrize("functional_call", [
|
|
subtest(torch.func.functional_call, "torch_func"),
|
|
subtest(stateless.functional_call, "stateless")
|
|
])
|
|
def test_circular_references(self, functional_call):
|
|
module = MockModule()
|
|
# Add a circular reference
|
|
module.l1.m = module
|
|
x = torch.rand((1, 1))
|
|
weight = torch.tensor([[1.0]])
|
|
bias = torch.tensor([0.0])
|
|
buffer = torch.tensor([0.0])
|
|
parameters = {'l1.m.l1.weight': weight,
|
|
'l1.bias': bias,
|
|
'l1.m.buffer': buffer}
|
|
prev_weight = module.l1.weight.clone()
|
|
prev_buffer = module.buffer.clone()
|
|
res = functional_call(module, parameters, x, tie_weights=False)
|
|
self.assertEqual(x, res)
|
|
# check that the weights remain unmodified and were correctly accesed
|
|
cur_weight = module.l1.weight
|
|
cur_buffer = module.buffer
|
|
self.assertEqual(cur_weight, prev_weight)
|
|
self.assertEqual(cur_buffer, prev_buffer)
|
|
|
|
@parametrize("functional_call", [
|
|
subtest(torch.func.functional_call, "torch_func"),
|
|
subtest(stateless.functional_call, "stateless")
|
|
])
|
|
def test_reparametrized_module_change_parametrization_original(self, functional_call):
|
|
module = MockModule()
|
|
torch.nn.utils.parametrizations.spectral_norm(module.l1)
|
|
self.assertTrue('l1.parametrizations.weight.original' in dict(module.named_parameters()))
|
|
orig_sn_weight = module.l1.weight.clone()
|
|
x = torch.rand((1, 1))
|
|
# We substitute the parameter inside the parametrization
|
|
# the parametrization itself is not overwritten so it will be applied with a different
|
|
# value for the original tensor
|
|
parameters = {'l1.parametrizations.weight.original': torch.nn.Parameter(torch.tensor([[1.0]])),
|
|
'l1.bias': torch.tensor([0.0]),
|
|
'buffer': torch.tensor([0.0])}
|
|
res = functional_call(module, parameters, x)
|
|
self.assertEqual(x, res)
|
|
# verify that the spectral normalization is still applied
|
|
self.assertTrue('l1.parametrizations.weight.original' in dict(module.named_parameters()))
|
|
self.assertEqual(orig_sn_weight, module.l1.weight)
|
|
|
|
@parametrize("functional_call", [
|
|
subtest(torch.func.functional_call, "torch_func"),
|
|
subtest(stateless.functional_call, "stateless")
|
|
])
|
|
def test_reparamertize_module_fail_reset_to_original(self, functional_call):
|
|
module = MockModule()
|
|
torch.nn.utils.parametrizations.spectral_norm(module.l1)
|
|
self.assertTrue('l1.parametrizations.weight.original' in dict(module.named_parameters()))
|
|
orig_sn_weight = module.l1.weight.clone()
|
|
# We substitute the parameter inside the parametrization
|
|
# the parametrization itself is not overwritten so it will be applied with a different
|
|
# value for the original tensor
|
|
parameters = {'l1.parametrizations.weight.original': torch.nn.Parameter(torch.tensor([[1.0]])),
|
|
'l1.bias': torch.tensor([0.0]),
|
|
'buffer': torch.tensor([0.0])}
|
|
with self.assertRaisesRegex(RuntimeError, "shapes cannot be multiplied"):
|
|
x = torch.rand((4, 5)) # to work, it should be of size (1, 1)
|
|
functional_call(module, parameters, x) # this call will fail because x is the wrong size
|
|
|
|
# verify that the spectral normalization is still applied
|
|
self.assertTrue('l1.parametrizations.weight.original' in dict(module.named_parameters()))
|
|
self.assertEqual(orig_sn_weight, module.l1.weight)
|
|
|
|
@parametrize("functional_call", [
|
|
subtest(torch.func.functional_call, "torch_func"),
|
|
subtest(stateless.functional_call, "stateless")
|
|
])
|
|
def test_tied_weights_warns(self, functional_call):
|
|
module = MockModule()
|
|
module.tied_bias = module.l1.bias
|
|
module.register_buffer("tied_buffer", module.buffer)
|
|
|
|
@parametrize("functional_call", [
|
|
subtest(torch.func.functional_call, "torch_func"),
|
|
subtest(stateless.functional_call, "stateless")
|
|
])
|
|
def test_reparamertize_tie_weights(self, functional_call):
|
|
module = MockTiedModule()
|
|
weight = torch.tensor([[2.0]],)
|
|
bias = torch.tensor([5.0])
|
|
buffer = torch.tensor([3.0])
|
|
|
|
parameters = {'l1.weight': weight,
|
|
'l1.bias': bias,
|
|
'buffer': buffer}
|
|
x = torch.randn(1, 1)
|
|
out = functional_call(module, parameters, x, tie_weights=True)
|
|
self.assertEqual(out, x * weight + bias + bias + buffer + buffer)
|
|
|
|
|
|
@parametrize("functional_call", [
|
|
subtest(torch.func.functional_call, "torch_func"),
|
|
subtest(stateless.functional_call, "stateless")
|
|
])
|
|
def test_reparamertize_tie_some_weights(self, functional_call):
|
|
module = MockTiedModule()
|
|
weight = torch.tensor([[2.0]],)
|
|
buffer = torch.tensor([3.0])
|
|
|
|
parameters = {'l1.weight': weight,
|
|
'buffer': buffer}
|
|
x = torch.randn(1, 1)
|
|
out = stateless.functional_call(module, parameters, x, tie_weights=True)
|
|
self.assertEqual(out, x * 2. + module.l1.bias + module.tied_bias + buffer + buffer)
|
|
|
|
@parametrize("functional_call", [
|
|
subtest(torch.func.functional_call, "torch_func"),
|
|
subtest(stateless.functional_call, "stateless")
|
|
])
|
|
def test_tied_weights_errors(self, functional_call):
|
|
module = MockTiedModule()
|
|
weight = torch.tensor([[1.0]],)
|
|
bias = torch.tensor([0.0])
|
|
buffer = torch.tensor([0.0])
|
|
|
|
parameters = {'l1.weight': weight,
|
|
'l1.bias': bias,
|
|
'buffer': buffer}
|
|
x = torch.randn(1, 1)
|
|
self.assertNotWarn(lambda: functional_call(module, parameters, x, tie_weights=True))
|
|
|
|
# if tied values are the same tensors, shouldn't warn
|
|
parameters['tied_bias'] = bias
|
|
parameters['tied_buffer'] = buffer
|
|
self.assertNotWarn(lambda: functional_call(module, parameters, x, tie_weights=True))
|
|
del parameters['tied_bias']
|
|
del parameters['tied_buffer']
|
|
|
|
with self.assertRaisesRegex(ValueError, "functional_call got values for both (l1.bias|tied_bias)"):
|
|
parameters['tied_bias'] = torch.tensor([5.0])
|
|
functional_call(module, parameters, x, tie_weights=True)
|
|
del parameters['tied_bias']
|
|
|
|
with self.assertRaisesRegex(ValueError, "functional_call got values for both (buffer|tied_buffer)"):
|
|
parameters['tied_buffer'] = torch.tensor([5.0])
|
|
functional_call(module, parameters, x, tie_weights=True)
|
|
|
|
|
|
def test_tied_weights_no_error_without_flag(self):
|
|
module = MockTiedModule()
|
|
weight = torch.tensor([[1.0]],)
|
|
bias = torch.tensor([0.0])
|
|
buffer = torch.tensor([0.0])
|
|
|
|
parameters = {'l1.weight': weight,
|
|
'l1.bias': bias,
|
|
'buffer': buffer}
|
|
x = torch.randn(1, 1)
|
|
self.assertNotWarn(lambda: stateless.functional_call(module, parameters, x, tie_weights=False))
|
|
parameters['tied_bias'] = torch.tensor([5.0])
|
|
self.assertNotWarn(lambda: stateless.functional_call(module, parameters, x, tie_weights=False))
|
|
del parameters['tied_bias']
|
|
parameters['tied_buffer'] = torch.tensor([5.0])
|
|
self.assertNotWarn(lambda: stateless.functional_call(module, parameters, x, tie_weights=False))
|
|
|
|
@parametrize("functional_call", [
|
|
subtest(torch.func.functional_call, "torch_func"),
|
|
subtest(stateless.functional_call, "stateless")
|
|
])
|
|
def test_setattr(self, functional_call):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.register_buffer('foo', torch.zeros(()))
|
|
|
|
def forward(self, x):
|
|
self.foo = self.foo + 1
|
|
return x + self.foo
|
|
|
|
a = {'foo': torch.zeros(())}
|
|
mod = Foo()
|
|
functional_call(mod, a, torch.ones(()))
|
|
self.assertEqual(mod.foo, torch.zeros(()))
|
|
self.assertEqual(a['foo'], torch.ones(()))
|
|
|
|
@parametrize("functional_call", [
|
|
subtest(torch.func.functional_call, "torch_func"),
|
|
subtest(stateless.functional_call, "stateless")
|
|
])
|
|
def test_functional_call_with_kwargs(self, functional_call):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self, x):
|
|
super().__init__()
|
|
self.x = x
|
|
|
|
def forward(self, inp, *, other_inp):
|
|
return inp * self.x + other_inp
|
|
|
|
a = {'x': torch.zeros(2, 3)}
|
|
mod = Foo(torch.randn(2, 3))
|
|
inp, other_inp = torch.randn(2, 3), torch.randn(2, 3)
|
|
with self.assertRaisesRegex(TypeError, "missing 1 required keyword-only argument: 'other_inp'"):
|
|
functional_call(mod, a, inp)
|
|
res = functional_call(mod, a, inp, {'other_inp': other_inp})
|
|
self.assertEqual(res, other_inp)
|
|
res_1 = functional_call(mod, a, (), {'inp': inp, 'other_inp': other_inp})
|
|
self.assertEqual(res, res_1)
|
|
|
|
|
|
def test_functional_call_tuple_dicts(self):
|
|
mod = MockModule()
|
|
x = torch.rand((1, 1))
|
|
parameters = {k: torch.ones_like(v) for k, v in mod.named_parameters()}
|
|
buffers = {k: torch.zeros_like(v) for k, v in mod.named_buffers()}
|
|
|
|
# two dictionaries
|
|
res = torch.func.functional_call(mod, (parameters, buffers), x)
|
|
self.assertEqual(res, x + 1)
|
|
|
|
# no dictionaries
|
|
res = torch.func.functional_call(mod, (), x)
|
|
self.assertEqual(res, mod(x))
|
|
|
|
# three dictonaries
|
|
a = ({'l1.weight': torch.ones(1, 1)}, {'l1.bias': torch.ones(1)}, {'buffer': torch.zeros(1)})
|
|
res = torch.func.functional_call(mod, a, x)
|
|
self.assertEqual(res, x + 1)
|
|
|
|
|
|
def test_functional_call_multiple_dicts_error(self):
|
|
mod = MockModule()
|
|
x = torch.rand((1, 1))
|
|
parameters = {'l1.weight': torch.zeros((1, 1)), 'l1.bias': torch.zeros((1, 1))}
|
|
repeated_parameters = {'l1.weight': torch.ones((1, 1))}
|
|
with self.assertRaisesRegex(ValueError, "l1.weight appeared in multiple dictionaries"):
|
|
torch.func.functional_call(mod, (parameters, repeated_parameters), x)
|
|
|
|
|
|
class TestStatelessDeprecation(TestCase):
|
|
def test_private_stateless_warns(self):
|
|
script = """
|
|
import torch
|
|
import warnings
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
from torch.nn.utils import _stateless
|
|
|
|
exit(len(w))
|
|
"""
|
|
try:
|
|
subprocess.check_output(
|
|
[sys.executable, '-W', 'all', '-c', script],
|
|
stderr=subprocess.STDOUT,
|
|
# On Windows, opening the subprocess with the default CWD makes `import torch`
|
|
# fail, so just set CWD to this script's directory
|
|
cwd=os.path.dirname(os.path.realpath(__file__)),)
|
|
except subprocess.CalledProcessError as e:
|
|
self.assertEqual(e.returncode, 1)
|
|
else:
|
|
self.assertTrue(False, "No warning was raised.")
|
|
|
|
class TestPythonOptimizeMode(TestCase):
|
|
def test_runs_with_optimize_flag(self):
|
|
script = """
|
|
import torch
|
|
"""
|
|
try:
|
|
subprocess.check_output(
|
|
[sys.executable, '-OO', '-c', script],
|
|
stderr=subprocess.STDOUT,
|
|
# On Windows, opening the subprocess with the default CWD makes `import torch`
|
|
# fail, so just set CWD to this script's directory
|
|
cwd=os.path.dirname(os.path.realpath(__file__)),)
|
|
except subprocess.CalledProcessError as e:
|
|
self.assertFalse(e.returncode, "Import failed while running python in optimized mode")
|
|
|
|
|
|
instantiate_parametrized_tests(
|
|
TestStatelessFunctionalAPI,
|
|
)
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|