mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
1655 lines
31 KiB
Python
1655 lines
31 KiB
Python
"""Adds docstrings to Tensor functions"""
|
||
|
||
import torch._C
|
||
from torch._C import _add_docstr as add_docstr
|
||
|
||
add_docstr(torch._C.FloatTensorBase.abs,
|
||
"""
|
||
abs() -> Tensor
|
||
|
||
See :func:`torch.abs`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.abs_,
|
||
"""
|
||
abs_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.abs`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.acos,
|
||
"""
|
||
acos() -> Tensor
|
||
|
||
See :func:`torch.acos`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.acos_,
|
||
"""
|
||
acos_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.acos`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.add,
|
||
"""
|
||
add(value)
|
||
|
||
See :func:`torch.add`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.add_,
|
||
"""
|
||
add_(value)
|
||
|
||
In-place version of :meth:`~Tensor.add`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.addbmm,
|
||
"""
|
||
addbmm(beta=1, mat, alpha=1, batch1, batch2) -> Tensor
|
||
|
||
See :func:`torch.addbmm`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.addbmm_,
|
||
"""
|
||
addbmm_(beta=1, mat, alpha=1, batch1, batch2) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.addbmm`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.addcdiv,
|
||
"""
|
||
addcdiv(value=1, tensor1, tensor2) -> Tensor
|
||
|
||
See :func:`torch.addcdiv`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.addcdiv_,
|
||
"""
|
||
addcdiv_(value=1, tensor1, tensor2) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.addcdiv`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.addcmul,
|
||
"""
|
||
addcmul(value=1, tensor1, tensor2) -> Tensor
|
||
|
||
See :func:`torch.addcmul`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.addcmul_,
|
||
"""
|
||
addcmul_(value=1, tensor1, tensor2) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.addcmul`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.addmm,
|
||
"""
|
||
addmm(beta=1, mat, alpha=1, mat1, mat2) -> Tensor
|
||
|
||
See :func:`torch.addmm`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.addmm_,
|
||
"""
|
||
addmm_(beta=1, mat, alpha=1, mat1, mat2) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.addmm`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.addmv,
|
||
"""
|
||
addmv(beta=1, tensor, alpha=1, mat, vec) -> Tensor
|
||
|
||
See :func:`torch.addmv`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.addmv_,
|
||
"""
|
||
addmv_(beta=1, tensor, alpha=1, mat, vec) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.addmv`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.addr,
|
||
"""
|
||
addr(beta=1, alpha=1, vec1, vec2) -> Tensor
|
||
|
||
See :func:`torch.addr`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.addr_,
|
||
"""
|
||
addr_(beta=1, alpha=1, vec1, vec2) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.addr`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.apply_,
|
||
"""
|
||
apply_(callable) -> Tensor
|
||
|
||
Applies the function :attr:`callable` to each element in the tensor, replacing
|
||
each element with the value returned by :attr:`callable`.
|
||
|
||
.. note::
|
||
|
||
This function only works with CPU tensors and should not be used in code
|
||
sections that require high performance.
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.asin,
|
||
"""
|
||
asin() -> Tensor
|
||
|
||
See :func:`torch.asin`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.asin_,
|
||
"""
|
||
asin_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.asin`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.atan,
|
||
"""
|
||
atan() -> Tensor
|
||
|
||
See :func:`torch.atan`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.atan2,
|
||
"""
|
||
atan2(other) -> Tensor
|
||
|
||
See :func:`torch.atan2`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.atan2_,
|
||
"""
|
||
atan2_(other) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.atan2`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.atan_,
|
||
"""
|
||
atan_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.atan`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.baddbmm,
|
||
"""
|
||
baddbmm(beta=1, alpha=1, batch1, batch2) -> Tensor
|
||
|
||
See :func:`torch.baddbmm`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.baddbmm_,
|
||
"""
|
||
baddbmm_(beta=1, alpha=1, batch1, batch2) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.baddbmm`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.bernoulli,
|
||
"""
|
||
bernoulli() -> Tensor
|
||
|
||
See :func:`torch.bernoulli`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.bernoulli_,
|
||
"""
|
||
bernoulli_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.bernoulli`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.bmm,
|
||
"""
|
||
bmm(batch2) -> Tensor
|
||
|
||
See :func:`torch.bmm`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.cauchy_,
|
||
"""
|
||
cauchy_(generator=None, median=0, sigma=1) -> Tensor
|
||
|
||
Fills the tensor with numbers drawn from the Cauchy distribution:
|
||
|
||
.. math::
|
||
|
||
P(x) = \dfrac{1}{\pi} \dfrac{\sigma}{(x - median)^2 + \sigma^2}
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.ceil,
|
||
"""
|
||
ceil() -> Tensor
|
||
|
||
See :func:`torch.ceil`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.ceil_,
|
||
"""
|
||
ceil_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.ceil`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.clamp,
|
||
"""
|
||
clamp(min, max) -> Tensor
|
||
|
||
See :func:`torch.clamp`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.clamp_,
|
||
"""
|
||
clamp_(min, max) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.clamp`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.clone,
|
||
"""
|
||
clone() -> Tensor
|
||
|
||
Returns a copy of the tensor. The copy has the same size and data type as the
|
||
original tensor.
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.contiguous,
|
||
"""
|
||
contiguous() -> Tensor
|
||
|
||
Returns a contiguous Tensor containing the same data as this tensor. If this
|
||
tensor is contiguous, this function returns the original tensor.
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.copy_,
|
||
"""
|
||
copy_(src, async=False) -> Tensor
|
||
|
||
Copies the elements from :attr:`src` into this tensor and returns this tensor.
|
||
|
||
The source tensor should have the same number of elements as this tensor. It
|
||
may be of a different data type or reside on a different device.
|
||
|
||
Args:
|
||
src (Tensor): Source tensor to copy
|
||
async (bool): If True and this copy is between CPU and GPU, then the copy
|
||
may occur asynchronously with respect to the host. For other
|
||
copies, this argument has no effect.
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.cos,
|
||
"""
|
||
cos() -> Tensor
|
||
|
||
See :func:`torch.cos`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.cos_,
|
||
"""
|
||
cos_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.cos`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.cosh,
|
||
"""
|
||
cosh() -> Tensor
|
||
|
||
See :func:`torch.cosh`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.cosh_,
|
||
"""
|
||
cosh_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.cosh`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.cross,
|
||
"""
|
||
cross(other, dim=-1) -> Tensor
|
||
|
||
See :func:`torch.cross`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.cumprod,
|
||
"""
|
||
cumprod(dim) -> Tensor
|
||
|
||
See :func:`torch.cumprod`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.cumsum,
|
||
"""
|
||
cumsum(dim) -> Tensor
|
||
|
||
See :func:`torch.cumsum`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.data_ptr,
|
||
"""
|
||
data_ptr() -> int
|
||
|
||
Returns the address of the first element of this tensor.
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.diag,
|
||
"""
|
||
diag(diagonal=0) -> Tensor
|
||
|
||
See :func:`torch.diag`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.dim,
|
||
"""
|
||
dim() -> int
|
||
|
||
Returns the number of dimensions of this tensor.
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.dist,
|
||
"""
|
||
dist(other, p=2) -> Tensor
|
||
|
||
See :func:`torch.dist`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.div,
|
||
"""
|
||
div(value)
|
||
|
||
See :func:`torch.div`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.div_,
|
||
"""
|
||
div_(value)
|
||
|
||
In-place version of :meth:`~Tensor.div`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.dot,
|
||
"""
|
||
dot(tensor2) -> float
|
||
|
||
See :func:`torch.dot`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.eig,
|
||
"""
|
||
eig(eigenvectors=False) -> (Tensor, Tensor)
|
||
|
||
See :func:`torch.eig`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.element_size,
|
||
"""
|
||
element_size() -> int
|
||
|
||
Returns the size in bytes of an individual element.
|
||
|
||
Example:
|
||
>>> torch.FloatTensor().element_size()
|
||
4
|
||
>>> torch.ByteTensor().element_size()
|
||
1
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.eq,
|
||
"""
|
||
eq(other) -> Tensor
|
||
|
||
See :func:`torch.eq`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.eq_,
|
||
"""
|
||
eq_(other) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.eq`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.equal,
|
||
"""
|
||
equal(other) -> bool
|
||
|
||
See :func:`torch.equal`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.exp,
|
||
"""
|
||
exp() -> Tensor
|
||
|
||
See :func:`torch.exp`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.exp_,
|
||
"""
|
||
exp_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.exp`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.exponential_,
|
||
"""
|
||
exponential_(generator=None, lambd=1) -> Tensor
|
||
|
||
Fills this tensor with elements drawn from the exponential distribution:
|
||
|
||
.. math::
|
||
|
||
P(x) = \lambda e^{-\lambda x}
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.fill_,
|
||
"""
|
||
fill_(value) -> Tensor
|
||
|
||
Fills this tensor with the specified value.
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.floor,
|
||
"""
|
||
floor() -> Tensor
|
||
|
||
See :func:`torch.floor`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.floor_,
|
||
"""
|
||
floor_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.floor`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.fmod,
|
||
"""
|
||
fmod(divisor) -> Tensor
|
||
|
||
See :func:`torch.fmod`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.fmod_,
|
||
"""
|
||
fmod_(divisor) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.fmod`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.frac,
|
||
"""
|
||
frac() -> Tensor
|
||
|
||
See :func:`torch.frac`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.frac_,
|
||
"""
|
||
frac_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.frac`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.gather,
|
||
"""
|
||
gather(dim, index) -> Tensor
|
||
|
||
See :func:`torch.gather`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.ge,
|
||
"""
|
||
ge(other) -> Tensor
|
||
|
||
See :func:`torch.ge`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.ge_,
|
||
"""
|
||
ge_(other) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.ge`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.gels,
|
||
"""
|
||
gels(A) -> Tensor
|
||
|
||
See :func:`torch.gels`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.geometric_,
|
||
"""
|
||
geometric_(generator=None, p) -> Tensor
|
||
|
||
Fills this tensor with elements drawn from the geometric distribution:
|
||
|
||
.. math::
|
||
|
||
P(X=k) = (1 - p)^{k - 1} p
|
||
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.geqrf,
|
||
"""
|
||
geqrf() -> (Tensor, Tensor)
|
||
|
||
See :func:`torch.geqrf`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.ger,
|
||
"""
|
||
ger(vec2) -> Tensor
|
||
|
||
See :func:`torch.ger`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.gesv,
|
||
"""
|
||
gesv(A) -> Tensor, Tensor
|
||
|
||
See :func:`torch.gesv`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.gt,
|
||
"""
|
||
gt(other) -> Tensor
|
||
|
||
See :func:`torch.gt`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.gt_,
|
||
"""
|
||
gt_(other) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.gt`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.histc,
|
||
"""
|
||
histc(bins=100, min=0, max=0) -> Tensor
|
||
|
||
See :func:`torch.histc`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.index,
|
||
"""
|
||
index(m) -> Tensor
|
||
|
||
Selects elements from this tensor using a binary mask or along a given
|
||
dimension. The expression ``tensor.index(m)`` is equivalent to ``tensor[m]``.
|
||
|
||
Args:
|
||
m (int or ByteTensor or slice): The dimension or mask used to select elements
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.index_add_,
|
||
"""
|
||
index_add_(dim, index, tensor) -> Tensor
|
||
|
||
Accumulate the elements of tensor into the original tensor by adding to the
|
||
indices in the order given in index. The shape of tensor must exactly match the
|
||
elements indexed or an error will be raised.
|
||
|
||
Args:
|
||
dim (int): Dimension along which to index
|
||
index (LongTensor): Indices to select from tensor
|
||
tensor (Tensor): Tensor containing values to add
|
||
|
||
Example:
|
||
>>> x = torch.Tensor([[1, 1, 1], [1, 1, 1], [1, 1, 1]])
|
||
>>> t = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||
>>> index = torch.LongTensor([0, 2, 1])
|
||
>>> x.index_add_(0, index, t)
|
||
>>> x
|
||
2 3 4
|
||
8 9 10
|
||
5 6 7
|
||
[torch.FloatTensor of size 3x3]
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.index_copy_,
|
||
"""
|
||
index_copy_(dim, index, tensor) -> Tensor
|
||
|
||
Copies the elements of tensor into the original tensor by selecting the
|
||
indices in the order given in index. The shape of tensor must exactly match the
|
||
elements indexed or an error will be raised.
|
||
|
||
Args:
|
||
dim (int): Dimension along which to index
|
||
index (LongTensor): Indices to select from tensor
|
||
tensor (Tensor): Tensor containing values to copy
|
||
|
||
Example:
|
||
>>> x = torch.Tensor(3, 3)
|
||
>>> t = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||
>>> index = torch.LongTensor([0, 2, 1])
|
||
>>> x.index_copy_(0, index, t)
|
||
>>> x
|
||
1 2 3
|
||
7 8 9
|
||
4 5 6
|
||
[torch.FloatTensor of size 3x3]
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.index_fill_,
|
||
"""
|
||
index_fill_(dim, index, tensor) -> Tensor
|
||
|
||
Fills the elements of the original tensor with value :attr:`val` by selecting
|
||
the indices in the order given in index.
|
||
|
||
Args:
|
||
dim (int): Dimension along which to index
|
||
index (LongTensor): Indices
|
||
val (float): Value to fill
|
||
|
||
Example:
|
||
>>> x = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||
>>> index = torch.LongTensor([0, 2])
|
||
>>> x.index_fill_(1, index, -1)
|
||
>>> x
|
||
-1 2 -1
|
||
-1 5 -1
|
||
-1 8 -1
|
||
[torch.FloatTensor of size 3x3]
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.index_select,
|
||
"""
|
||
index_select(dim, index) -> Tensor
|
||
|
||
See :func:`torch.index_select`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.inverse,
|
||
"""
|
||
inverse() -> Tensor
|
||
|
||
See :func:`torch.inverse`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.is_contiguous,
|
||
"""
|
||
is_contiguous() -> bool
|
||
|
||
Returns True if this tensor is contiguous in memory in C order.
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.is_set_to,
|
||
"""
|
||
is_set_to(tensor) -> bool
|
||
|
||
Returns True if this object refers to the same ``THTensor`` object from the
|
||
Torch C API as the given tensor.
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.kthvalue,
|
||
"""
|
||
kthvalue(k, dim=None) -> (Tensor, LongTensor)
|
||
|
||
See :func:`torch.kthvalue`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.le,
|
||
"""
|
||
le(other) -> Tensor
|
||
|
||
See :func:`torch.le`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.le_,
|
||
"""
|
||
le_(other) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.le`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.lerp,
|
||
"""
|
||
lerp(start, end, weight)
|
||
|
||
See :func:`torch.lerp`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.lerp_,
|
||
"""
|
||
lerp_(start, end, weight)
|
||
|
||
In-place version of :meth:`~Tensor.lerp`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.log,
|
||
"""
|
||
log() -> Tensor
|
||
|
||
See :func:`torch.log`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.log1p,
|
||
"""
|
||
log1p() -> Tensor
|
||
|
||
See :func:`torch.log1p`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.log1p_,
|
||
"""
|
||
log1p_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.log1p`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.log_, """
|
||
log_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.log`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.log_normal_, r"""
|
||
log_normal_(generator=None, mean=1, stdv=2)
|
||
|
||
Fills this tensor with numbers samples from the log-normal distribution
|
||
parameterized by the given mean (µ) and standard deviation (σ). Note that
|
||
:attr:`mean` and :attr:`stdv` are the mean and standard deviation of the
|
||
underlying normal distribution, and not of the returned distribution:
|
||
|
||
.. math::
|
||
|
||
P(x) = \dfrac{1}{x \sigma \sqrt{2\pi}} e^{-\dfrac{(\ln x - \mu)^2}{2\sigma^2}}
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.lt,
|
||
"""
|
||
lt(other) -> Tensor
|
||
|
||
See :func:`torch.lt`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.lt_,
|
||
"""
|
||
lt_(other) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.lt`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.map_,
|
||
"""
|
||
map_(tensor, callable)
|
||
|
||
Applies :attr:`callable` for each element in this tensor and the given tensor
|
||
and stores the results in this tensor. The :attr:`callable` should have the
|
||
signature::
|
||
|
||
def callable(a, b) -> number
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.masked_copy_,
|
||
"""
|
||
masked_copy_(mask, source)
|
||
|
||
Copies elements from :attr:`source` into this tensor at positions where the
|
||
:attr:`mask` is one. The :attr:`mask` should have the same number of elements
|
||
as this tensor. The :attr:`source` should have at least as many elements as the
|
||
number of ones in :attr:`mask`
|
||
|
||
Args:
|
||
mask (ByteTensor): The binary mask
|
||
source (Tensor): The tensor to copy from
|
||
|
||
.. note::
|
||
|
||
The :attr:`mask` operates on the :attr:`self` tensor, not on the given
|
||
:attr:`source` tensor.
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.masked_fill_,
|
||
"""
|
||
masked_fill_(mask, value)
|
||
|
||
Fills elements of this tensor with :attr:`value` where :attr:`mask` is one.
|
||
The :attr:`mask` should have the same number of elements as this tensor, but
|
||
the shape may differ.
|
||
|
||
Args:
|
||
mask (ByteTensor): The binary mask
|
||
value (Tensor): The value to fill
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.masked_select,
|
||
"""
|
||
masked_select(mask) -> Tensor
|
||
|
||
See :func:`torch.masked_select`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.max,
|
||
"""
|
||
max(dim=None) -> float or (Tensor, Tensor)
|
||
|
||
See :func:`torch.max`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.mean,
|
||
"""
|
||
mean(dim=None) -> float or (Tensor, Tensor)
|
||
|
||
See :func:`torch.mean`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.median,
|
||
"""
|
||
median(dim=-1, values=None, indices=None) -> (Tensor, LongTensor)
|
||
|
||
See :func:`torch.median`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.min,
|
||
"""
|
||
min(dim=None) -> float or (Tensor, Tensor)
|
||
|
||
See :func:`torch.min`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.mm,
|
||
"""
|
||
mm(mat2) -> Tensor
|
||
|
||
See :func:`torch.mm`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.mode,
|
||
"""
|
||
mode(dim=-1, values=None, indices=None) -> (Tensor, LongTensor)
|
||
|
||
See :func:`torch.mode`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.mul,
|
||
"""
|
||
mul(value) -> Tensor
|
||
|
||
See :func:`torch.mul`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.mul_,
|
||
"""
|
||
mul_(value)
|
||
|
||
In-place version of :meth:`~Tensor.mul`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.multinomial,
|
||
"""
|
||
multinomial(generator=None, num_samples, replacement=False)
|
||
|
||
See :func:`torch.multinomial`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.mv,
|
||
"""
|
||
mv(vec) -> Tensor
|
||
|
||
See :func:`torch.mv`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.narrow,
|
||
"""
|
||
narrow(dimension, start, length) -> Tensor
|
||
|
||
Returns a new tensor that is a narrowed version of this tensor. The dimension
|
||
:attr:`dim` is narrowed from :attr:`start` to :attr:`start + length`. The
|
||
returned tensor and this tensor share the same underlying storage.
|
||
|
||
Args:
|
||
dimension (int): The dimension along which to narrow
|
||
start (int): The starting dimension
|
||
length (int):
|
||
|
||
Example:
|
||
>>> x = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||
>>> x.narrow(0, 0, 2)
|
||
1 2 3
|
||
4 5 6
|
||
[torch.FloatTensor of size 2x3]
|
||
>>> x.narrow(1, 1, 2)
|
||
2 3
|
||
5 6
|
||
8 9
|
||
[torch.FloatTensor of size 3x2]
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.ndimension,
|
||
"""
|
||
ndimension() -> int
|
||
|
||
Alias for :meth:`~Tensor.dim()`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.ne,
|
||
"""
|
||
ne(other) -> Tensor
|
||
|
||
See :func:`torch.ne`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.ne_,
|
||
"""
|
||
ne_(other) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.ne`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.neg,
|
||
"""
|
||
neg() -> Tensor
|
||
|
||
See :func:`torch.neg`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.neg_,
|
||
"""
|
||
neg_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.neg`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.nelement,
|
||
"""
|
||
nelement() -> int
|
||
|
||
Alias for :meth:`~Tensor.numel`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.nonzero,
|
||
"""
|
||
nonzero() -> LongTensor
|
||
|
||
See :func:`torch.nonzero`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.norm,
|
||
"""
|
||
norm(p=2) -> float
|
||
|
||
See :func:`torch.norm`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.normal_,
|
||
"""
|
||
normal_(generator=None, mean=0, var=1)
|
||
|
||
Fills this tensor with elements samples from the normal distribution
|
||
parameterized by :attr:`mean` and :attr:`var`.
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.numel,
|
||
"""
|
||
numel() -> int
|
||
|
||
See :func:`torch.numel`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.numpy,
|
||
"""
|
||
numpy() -> ndarray
|
||
|
||
Returns this tensor as a NumPy :class:`ndarray`. This tensor and the returned
|
||
:class:`ndarray` share the same underlying storage. Changes to this tensor will
|
||
be reflected in the :class:`ndarray` and vice versa.
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.orgqr,
|
||
"""
|
||
orgqr(input2) -> Tensor
|
||
|
||
See :func:`torch.orgqr`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.ormqr,
|
||
"""
|
||
ormqr(input2, input3, left=True, transpose=False) -> Tensor
|
||
|
||
See :func:`torch.ormqr`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.potrf,
|
||
"""
|
||
potrf(upper=True) -> Tensor
|
||
|
||
See :func:`torch.potrf`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.potri,
|
||
"""
|
||
potri(upper=True) -> Tensor
|
||
|
||
See :func:`torch.potri`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.potrs,
|
||
"""
|
||
potrs(input2, upper=True) -> Tensor
|
||
|
||
See :func:`torch.potrs`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.pow,
|
||
"""
|
||
pow(exponent)
|
||
|
||
See :func:`torch.pow`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.pow_,
|
||
"""
|
||
pow_(exponent)
|
||
|
||
In-place version of :meth:`~Tensor.pow`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.prod,
|
||
"""
|
||
prod() -> float
|
||
|
||
See :func:`torch.prod`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.pstrf,
|
||
"""
|
||
pstrf(upper=True, tol=-1) -> (Tensor, IntTensor)
|
||
|
||
See :func:`torch.pstrf`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.qr,
|
||
"""
|
||
qr() -> (Tensor, Tensor)
|
||
|
||
See :func:`torch.qr`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.random_,
|
||
"""
|
||
random_(generator=None, from=0, to=None)
|
||
|
||
Fills this tensor with numbers sampled from the uniform distribution or
|
||
discrete uniform distribution over [from, to]. If not specified, :attr:`to`
|
||
defaults to the largest value representable by this tensor's data type.
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.reciprocal,
|
||
"""
|
||
reciprocal() -> Tensor
|
||
|
||
See :func:`torch.reciprocal`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.reciprocal_,
|
||
"""
|
||
reciprocal_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.reciprocal`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.remainder,
|
||
"""
|
||
remainder(divisor) -> Tensor
|
||
|
||
See :func:`torch.remainder`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.remainder_,
|
||
"""
|
||
remainder_(divisor) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.remainder`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.renorm,
|
||
"""
|
||
renorm(p, dim, maxnorm) -> Tensor
|
||
|
||
See :func:`torch.renorm`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.renorm_,
|
||
"""
|
||
renorm_(p, dim, maxnorm) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.renorm`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.resize_,
|
||
"""
|
||
resize_(*sizes)
|
||
|
||
Resizes this tensor to the specified size. If the number of elements is
|
||
larger than the current storage size, then the underlying storage is resized
|
||
to fit the new number of elements. If the number of elements is smaller, the
|
||
underlying storage is not changed. Existing elements are preserved but any new
|
||
memory is uninitialized.
|
||
|
||
Args:
|
||
sizes (torch.Size or int...): The desired size
|
||
|
||
Example:
|
||
>>> x = torch.Tensor([[1, 2], [3, 4], [5, 6]])
|
||
>>> x.resize_(2, 2)
|
||
>>> x
|
||
1 2
|
||
3 4
|
||
[torch.FloatTensor of size 2x2]
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.resize_as_,
|
||
"""
|
||
resize_as_(tensor)
|
||
|
||
Resizes the current tensor to be the same size as the specified tensor. This is
|
||
equivalent to::
|
||
|
||
self.resize_(tensor.size())
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.round,
|
||
"""
|
||
round() -> Tensor
|
||
|
||
See :func:`torch.round`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.round_,
|
||
"""
|
||
round_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.round`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.rsqrt,
|
||
"""
|
||
rsqrt() -> Tensor
|
||
|
||
See :func:`torch.rsqrt`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.rsqrt_,
|
||
"""
|
||
rsqrt_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.rsqrt`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.scatter_,
|
||
"""
|
||
scatter_(input, dim, index, src) -> Tensor
|
||
|
||
Writes all values from the Tensor :attr:`src` into self at the indices specified
|
||
in the :attr:`index` Tensor. The indices are specified with respect to the
|
||
given dimension, dim, in the manner described in :meth:`~Tensor.gather`.
|
||
|
||
Note that, as for gather, the values of index must be between `0` and `(self.size(dim) -1)`
|
||
inclusive and all values in a row along the specified dimension must be unique.
|
||
|
||
Args:
|
||
input (Tensor): The source tensor
|
||
dim (int): The axis along which to index
|
||
index (LongTensor): The indices of elements to scatter
|
||
src (Tensor or float): The source element(s) to scatter
|
||
|
||
Example::
|
||
|
||
>>> x = torch.rand(2, 5)
|
||
>>> x
|
||
|
||
0.4319 0.6500 0.4080 0.8760 0.2355
|
||
0.2609 0.4711 0.8486 0.8573 0.1029
|
||
[torch.FloatTensor of size 2x5]
|
||
|
||
>>> torch.zeros(3, 5).scatter_(0, torch.LongTensor([[0, 1, 2, 0, 0], [2, 0, 0, 1, 2]]), x)
|
||
|
||
0.4319 0.4711 0.8486 0.8760 0.2355
|
||
0.0000 0.6500 0.0000 0.8573 0.0000
|
||
0.2609 0.0000 0.4080 0.0000 0.1029
|
||
[torch.FloatTensor of size 3x5]
|
||
|
||
>>> z = torch.zeros(2, 4).scatter_(1, torch.LongTensor([[2], [3]]), 1.23)
|
||
>>> z
|
||
|
||
0.0000 0.0000 1.2300 0.0000
|
||
0.0000 0.0000 0.0000 1.2300
|
||
[torch.FloatTensor of size 2x4]
|
||
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.select,
|
||
"""
|
||
select(dim, index) -> Tensor or number
|
||
|
||
Slices the tensor along the selected dimension at the given index. If this
|
||
tensor is one dimensional, this function returns a number. Otherwise, it
|
||
returns a tensor with the given dimension removed.
|
||
|
||
Args:
|
||
dim (int): Dimension to slice
|
||
index (int): Index to select
|
||
|
||
.. note::
|
||
|
||
:meth:`select` is equivalent to slicing. For example, ``tensor.select(0, index)``
|
||
is equivalent to ``tensor[index]`` and ``tensor.select(2, index)`` is equivalent
|
||
to ``tensor[:,:,index]``.
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.set_,
|
||
"""
|
||
set_(source=None, storage_offset=0, size=None, stride=None)
|
||
|
||
Sets the underlying storage, size, and strides. If :attr:`source` is a tensor,
|
||
this tensor will share the same storage and have the same size and strides
|
||
as the given tensor. Changes to elements in one tensor will be reflected in the
|
||
other.
|
||
|
||
If :attr:`source` is a :class:`~torch.Storage`, the method sets the underlying
|
||
storage, offset, size, and stride.
|
||
|
||
Args:
|
||
source (Tensor or Storage): The tensor or storage to use
|
||
storage_offset (int): The offset in the storage
|
||
size (torch.Size): The desired size. Defaults to the size of the source.
|
||
stride (tuple): The desired stride. Defaults to C-contiguous strides.
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.set_index,
|
||
"""
|
||
set_index(index, value)
|
||
|
||
Alias for ``self[index] = value``
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.sigmoid,
|
||
"""
|
||
sigmoid() -> Tensor
|
||
|
||
See :func:`torch.sigmoid`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.sigmoid_,
|
||
"""
|
||
sigmoid_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.sigmoid`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.sign,
|
||
"""
|
||
sign() -> Tensor
|
||
|
||
See :func:`torch.sign`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.sign_,
|
||
"""
|
||
sign_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.sign`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.sin,
|
||
"""
|
||
sin() -> Tensor
|
||
|
||
See :func:`torch.sin`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.sin_,
|
||
"""
|
||
sin_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.sin`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.sinh,
|
||
"""
|
||
sinh() -> Tensor
|
||
|
||
See :func:`torch.sinh`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.sinh_,
|
||
"""
|
||
sinh_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.sinh`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.size,
|
||
"""
|
||
size() -> torch.Size
|
||
|
||
Returns the size of the tensor. The returned value is a subclass of
|
||
:class:`tuple`.
|
||
|
||
Example:
|
||
>>> torch.Tensor(3, 4, 5).size()
|
||
torch.Size([3, 4, 5])
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.sort,
|
||
"""
|
||
sort(dim=None, descending=False) -> (Tensor, LongTensor)
|
||
|
||
See :func:`torch.sort`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.sqrt,
|
||
"""
|
||
sqrt() -> Tensor
|
||
|
||
See :func:`torch.sqrt`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.sqrt_,
|
||
"""
|
||
sqrt_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.sqrt`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.squeeze,
|
||
"""
|
||
squeeze(dim=None)
|
||
|
||
See :func:`torch.squeeze`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.squeeze_,
|
||
"""
|
||
squeeze_(dim=None)
|
||
|
||
In-place version of :meth:`~Tensor.squeeze`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.std,
|
||
"""
|
||
std() -> float
|
||
|
||
See :func:`torch.std`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.storage,
|
||
"""
|
||
storage() -> torch.Storage
|
||
|
||
Returns the underlying storage
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.storage_offset,
|
||
"""
|
||
storage_offset() -> int
|
||
|
||
Returns this tensor's offset in the underlying storage in terms of number of
|
||
storage elements (not bytes).
|
||
|
||
Example:
|
||
>>> x = torch.Tensor([1, 2, 3, 4, 5])
|
||
>>> x.storage_offset()
|
||
0
|
||
>>> x[3:].storage_offset()
|
||
3
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.stride,
|
||
"""
|
||
stride() -> tuple
|
||
|
||
Returns the stride of the tensor.
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.sub,
|
||
"""
|
||
sub(value, other) -> Tensor
|
||
|
||
Subtracts a scalar or tensor from this tensor. If both :attr:`value` and
|
||
:attr:`other` are specified, each element of :attr:`other` is scaled by
|
||
:attr:`value` before being used.
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.sub_,
|
||
"""
|
||
sub_(x) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.sub`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.sum,
|
||
"""
|
||
sum(dim=None) -> float
|
||
|
||
See :func:`torch.sum`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.svd,
|
||
"""
|
||
svd(some=True) -> (Tensor, Tensor, Tensor)
|
||
|
||
See :func:`torch.svd`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.symeig,
|
||
"""
|
||
symeig(eigenvectors=False, upper=True) -> (Tensor, Tensor)
|
||
|
||
See :func:`torch.symeig`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.t,
|
||
"""
|
||
t() -> Tensor
|
||
|
||
See :func:`torch.t`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.t_,
|
||
"""
|
||
t_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.t`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.tan,
|
||
"""
|
||
tan() -> Tensor
|
||
|
||
See :func:`torch.tan`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.tan_,
|
||
"""
|
||
tan_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.tan`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.tanh,
|
||
"""
|
||
tanh() -> Tensor
|
||
|
||
See :func:`torch.tanh`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.tanh_,
|
||
"""
|
||
tanh_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.tanh`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.topk,
|
||
"""
|
||
topk(k, dim=None, largest=True, sorted=True) -> (Tensor, LongTensor)
|
||
|
||
See :func:`torch.topk`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.trace,
|
||
"""
|
||
trace() -> float
|
||
|
||
See :func:`torch.trace`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.transpose,
|
||
"""
|
||
transpose(dim0, dim1) -> Tensor
|
||
|
||
See :func:`torch.transpose`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.transpose_,
|
||
"""
|
||
transpose_(dim0, dim1) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.transpose`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.tril,
|
||
"""
|
||
tril(k=0) -> Tensor
|
||
|
||
See :func:`torch.tril`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.tril_,
|
||
"""
|
||
tril_(k=0) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.tril`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.triu,
|
||
"""
|
||
triu(k=0) -> Tensor
|
||
|
||
See :func:`torch.triu`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.triu_,
|
||
"""
|
||
triu_(k=0) -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.triu`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.trtrs,
|
||
"""
|
||
trtrs(A, upper=True, transpose=False, unitriangular=False) -> (Tensor, Tensor)
|
||
|
||
See :func:`torch.trtrs`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.trunc,
|
||
"""
|
||
trunc() -> Tensor
|
||
|
||
See :func:`torch.trunc`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.trunc_,
|
||
"""
|
||
trunc_() -> Tensor
|
||
|
||
In-place version of :meth:`~Tensor.trunc`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.unfold,
|
||
"""
|
||
unfold(dim, size, step) -> Tensor
|
||
|
||
Returns a tensor which contains all slices of size :attr:`size` in
|
||
the dimension :attr:`dim`.
|
||
|
||
Step between two slices is given by :attr:`step`.
|
||
|
||
If `sizedim` is the original size of dimension dim, the size of dimension `dim`
|
||
in the returned tensor will be `(sizedim - size) / step + 1`
|
||
|
||
An additional dimension of size size is appended in the returned tensor.
|
||
|
||
Args:
|
||
dim (int): dimension in which unfolding happens
|
||
size (int): size of each slice that is unfolded
|
||
step (int): the step between each slice
|
||
|
||
Example::
|
||
|
||
>>> x = torch.range(1, 7)
|
||
>>> x
|
||
|
||
1
|
||
2
|
||
3
|
||
4
|
||
5
|
||
6
|
||
7
|
||
[torch.FloatTensor of size 7]
|
||
|
||
>>> x.unfold(0, 2, 1)
|
||
|
||
1 2
|
||
2 3
|
||
3 4
|
||
4 5
|
||
5 6
|
||
6 7
|
||
[torch.FloatTensor of size 6x2]
|
||
|
||
>>> x.unfold(0, 2, 2)
|
||
|
||
1 2
|
||
3 4
|
||
5 6
|
||
[torch.FloatTensor of size 3x2]
|
||
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.uniform_,
|
||
"""
|
||
uniform_(from=0, to=1) -> Tensor
|
||
|
||
Fills this tensor with numbers sampled from the uniform distribution:
|
||
|
||
.. math:
|
||
|
||
P(x) = \dfrac{1}{to - from}
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.var,
|
||
"""
|
||
var() -> float
|
||
|
||
See :func:`torch.var`
|
||
""")
|
||
|
||
add_docstr(torch._C.FloatTensorBase.zero_,
|
||
"""
|
||
zero_()
|
||
|
||
Fills this tensor with zeros.
|
||
""")
|