mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/49754 This PR adds the support for {input/output}_quantized_idxs for standalone module. if input_quantized_idxs = [] and output_quantized_idxs = [], the standalone module will be expecting float input and produce float output, and will quantize the input and dequantize output internally if input_quantized_idxs = [0] and otuput_qiuantized_idxs = [0], the standalone module will be expecting quantized input and produce quantized output, the input will be quantized in the parent module, and output will be dequantized in the parent module as well, this is similar to current quantized modules like nn.quantized.Conv2d For more details, please see the test case Test Plan: python test/test_quantization.py TestQuantizeFx.test_standalone_module Imported from OSS Reviewed By: raghuramank100 Differential Revision: D25684692 fbshipit-source-id: 900360e01c0e35b26fe85f4a887dc1fd6f7bfb66
399 lines
16 KiB
Python
399 lines
16 KiB
Python
import torch
|
|
from torch.fx import GraphModule # type: ignore
|
|
from torch.fx.symbolic_trace import Tracer # type: ignore
|
|
from .fx import Fuser # noqa: F401
|
|
from .fx import Quantizer # noqa: F401
|
|
from .fx.utils import graph_pretty_str # noqa: F401
|
|
from .fx.utils import get_custom_module_class_keys # noqa: F401
|
|
from torch.nn.intrinsic import _FusedModule
|
|
from typing import Dict, Any, List, Callable
|
|
|
|
def _check_is_graph_module(model: torch.nn.Module) -> None:
|
|
if not isinstance(model, GraphModule):
|
|
raise ValueError(
|
|
'input model must be a GraphModule, ' +
|
|
'Got type:' + str(type(model)) + ' Please make ' +
|
|
'sure to follow the tutorials.')
|
|
|
|
def _swap_ff_with_fxff(model: torch.nn.Module) -> None:
|
|
r""" Swap FloatFunctional with FXFloatFunctional
|
|
"""
|
|
modules_to_swap = []
|
|
for name, module in model.named_children():
|
|
if isinstance(module, torch.nn.quantized.FloatFunctional):
|
|
modules_to_swap.append(name)
|
|
else:
|
|
_swap_ff_with_fxff(module)
|
|
|
|
for name in modules_to_swap:
|
|
del model._modules[name]
|
|
model._modules[name] = torch.nn.quantized.FXFloatFunctional()
|
|
|
|
def _fuse_fx(
|
|
graph_module: GraphModule,
|
|
fuse_custom_config_dict: Dict[str, Any] = None) -> GraphModule:
|
|
r""" Internal helper function to fuse modules in preparation for quantization
|
|
|
|
Args:
|
|
graph_module: GraphModule object from symbolic tracing (torch.fx.symbolic_trace)
|
|
"""
|
|
_check_is_graph_module(graph_module)
|
|
fuser = Fuser()
|
|
return fuser.fuse(graph_module, fuse_custom_config_dict)
|
|
|
|
class CustomTracer(Tracer):
|
|
def __init__(self, skipped_module_names: List[str],
|
|
skipped_module_classes: List[Callable]):
|
|
super().__init__()
|
|
self.skipped_module_names = skipped_module_names
|
|
self.skipped_module_classes = skipped_module_classes
|
|
|
|
def is_leaf_module(self, m, module_qualified_name):
|
|
return (m.__module__.startswith('torch.nn') and
|
|
not isinstance(m, torch.nn.Sequential)) or \
|
|
module_qualified_name in self.skipped_module_names or \
|
|
type(m) in self.skipped_module_classes or \
|
|
isinstance(m, _FusedModule)
|
|
|
|
|
|
def _prepare_fx(model: torch.nn.Module, qconfig_dict: Any,
|
|
prepare_custom_config_dict: Dict[str, Any] = None,
|
|
is_standalone_module: bool = False) -> GraphModule:
|
|
r""" Internal helper function for prepare_fx
|
|
Args:
|
|
`model`, `qconfig_dict`, `prepare_custom_config_dict`: see docs for :func:`~torch.quantization.prepare_fx`
|
|
`is_standalone_module`: a boolean flag indicates whether we are
|
|
quantizing a standalone module or not, a standalone module
|
|
is a submodule of the parent module that is not inlined in the
|
|
forward graph of the parent module,
|
|
the way we quantize standalone module is described in:
|
|
:func:`~torch.quantization._prepare_standalone_module_fx`
|
|
"""
|
|
if prepare_custom_config_dict is None:
|
|
prepare_custom_config_dict = {}
|
|
|
|
skipped_module_names = prepare_custom_config_dict.get("non_traceable_module_name", [])
|
|
skipped_module_classes = prepare_custom_config_dict.get("non_traceable_module_class", [])
|
|
|
|
# swap FloatFunctional with FXFloatFunctional
|
|
_swap_ff_with_fxff(model)
|
|
|
|
# symbolically trace the model
|
|
if not is_standalone_module:
|
|
# standalone module and custom module config are applied in top level module
|
|
standalone_module_name_configs = prepare_custom_config_dict.get("standalone_module_name", [])
|
|
skipped_module_names += [config[0] for config in standalone_module_name_configs]
|
|
|
|
standalone_module_class_configs = prepare_custom_config_dict.get("standalone_module_class", [])
|
|
skipped_module_classes += [config[0] for config in standalone_module_class_configs]
|
|
float_custom_module_classes = get_custom_module_class_keys(
|
|
prepare_custom_config_dict, "float_to_observed_custom_module_class")
|
|
skipped_module_classes += float_custom_module_classes
|
|
tracer = CustomTracer(skipped_module_names, skipped_module_classes)
|
|
graph_module = GraphModule(model, tracer.trace(model))
|
|
graph_module = _fuse_fx(graph_module, prepare_custom_config_dict)
|
|
quantizer = Quantizer()
|
|
return quantizer.prepare(
|
|
graph_module,
|
|
qconfig_dict,
|
|
prepare_custom_config_dict=prepare_custom_config_dict,
|
|
is_standalone_module=is_standalone_module)
|
|
|
|
def _prepare_standalone_module_fx(
|
|
model: torch.nn.Module, qconfig_dict: Any,
|
|
prepare_custom_config_dict: Dict[str, Any] = None) -> GraphModule:
|
|
r""" [Internal use only] Prepare a standalone module, so that it can be used when quantizing the
|
|
parent module.
|
|
standalone_module means it a submodule that is not inlined in parent module,
|
|
and will be quantized separately as one unit.
|
|
|
|
How the standalone module is observed is specified by `input_quantized_idxs` and
|
|
`output_quantized_idxs` in the prepare_custom_config for the standalone module
|
|
|
|
Returns:
|
|
model(GraphModule): prepared standalone module
|
|
attributes:
|
|
_standalone_module_input_quantized_idxs(List[Int]): a list of
|
|
indexes for the graph input that is expected to be quantized,
|
|
same as input_quantized_idxs configuration provided
|
|
for the standalone module
|
|
_standalone_module_output_quantized_idxs(List[Int]): a list of
|
|
indexs for the graph output that is quantized
|
|
same as input_quantized_idxs configuration provided
|
|
for the standalone module
|
|
"""
|
|
return _prepare_fx(model, qconfig_dict, prepare_custom_config_dict, is_standalone_module=True)
|
|
|
|
def fuse_fx(model: torch.nn.Module,
|
|
fuse_custom_config_dict: Dict[str, Any] = None) -> GraphModule:
|
|
r""" Fuse modules like conv+bn, conv+bn+relu etc, model must be in eval mode.
|
|
Fusion rules are defined in torch.quantization.fx.fusion_pattern.py
|
|
Args:
|
|
`model`: a torch.nn.Module model
|
|
`fuse_custom_config_dict`: Dictionary for custom configurations for fuse_fx, e.g.
|
|
fuse_custom_config_dict = {
|
|
"additional_fuser_method_mapping": {
|
|
(Module1, Module2): fuse_module1_module2
|
|
}
|
|
}
|
|
|
|
Example:
|
|
```python
|
|
from torch.quantization import fuse_fx
|
|
m = Model().eval()
|
|
m = fuse_fx(m)
|
|
```
|
|
"""
|
|
torch._C._log_api_usage_once("quantization_api.quantize_fx.fuse_fx")
|
|
assert not model.training, 'fuse_fx only works on models in eval mode'
|
|
graph_module = torch.fx.symbolic_trace(model) # type: ignore
|
|
return _fuse_fx(graph_module, fuse_custom_config_dict)
|
|
|
|
def prepare_fx(
|
|
model: torch.nn.Module, qconfig_dict: Any,
|
|
prepare_custom_config_dict: Dict[str, Any] = None) -> GraphModule:
|
|
r""" Prepare a model for post training static quantization
|
|
|
|
Args:
|
|
`model`: torch.nn.Module model, must be in eval mode
|
|
`qconfig_dict`: qconfig_dict is a dictionary with the following configurations:
|
|
qconfig_dict = {
|
|
# optional, global config
|
|
"": qconfig?,
|
|
|
|
# optional, used for module and function types
|
|
# could also be split into module_types and function_types if we prefer
|
|
"object_type": [
|
|
(torch.nn.Conv2d, qconfig?),
|
|
(torch.nn.functional.add, qconfig?),
|
|
...,
|
|
],
|
|
|
|
# optional, used for module names
|
|
"module_name": [
|
|
("foo.bar", qconfig?)
|
|
...,
|
|
],
|
|
|
|
# optional, matched in order, first match takes precedence
|
|
"module_name_regex": [
|
|
("foo.*bar.*conv[0-9]+", qconfig?)
|
|
...,
|
|
],
|
|
# priority (in increasing order): global, object_type, module_name_regex, module_name
|
|
# qconfig == None means fusion and quantization should be skipped for anything
|
|
# matching the rule
|
|
}
|
|
`prepare_custom_config_dict`: customization configuration dictionary for
|
|
quantization tool:
|
|
prepare_custom_config_dict = {
|
|
# optional: specify the path for standalone modules
|
|
# These modules are symbolically traced and quantized as one unit
|
|
"standalone_module_name": [
|
|
# module_name, qconfig_dict, prepare_custom_config_dict
|
|
("submodule.standalone",
|
|
None, # qconfig_dict for the prepare function called in the submodule,
|
|
# None means use qconfig from parent qconfig_dict
|
|
{"input_quantized_idxs": [], "output_quantized_idxs": []}) # prepare_custom_config_dict
|
|
],
|
|
|
|
"standalone_module_class": [
|
|
# module_class, qconfig_dict, prepare_custom_config_dict
|
|
(StandaloneModule,
|
|
None, # qconfig_dict for the prepare function called in the submodule,
|
|
# None means use qconfig from parent qconfig_dict
|
|
{"input_quantized_idxs": [0], "output_quantized_idxs": [0]}) # prepare_custom_config_dict
|
|
],
|
|
|
|
# user will manually define the corresponding observed
|
|
# module class which has a from_float class method that converts
|
|
# float custom module to observed custom module
|
|
# (only needed for static quantization)
|
|
"float_to_observed_custom_module_class": {
|
|
"static": {
|
|
CustomModule: ObservedCustomModule
|
|
}
|
|
},
|
|
|
|
# the qualified names for the submodule that are not symbolically traceable
|
|
"non_traceable_module_name": [
|
|
"non_traceable_module"
|
|
],
|
|
|
|
# the module classes that are not symbolically traceable
|
|
# we'll also put dynamic/weight_only custom module here
|
|
"non_traceable_module_class": [
|
|
NonTraceableModule
|
|
],
|
|
|
|
# Additional fuser_method mapping
|
|
"additional_fuser_method_mapping": {
|
|
(torch.nn.Conv2d, torch.nn.BatchNorm2d): fuse_conv_bn
|
|
},
|
|
|
|
# Additioanl module mapping for qat
|
|
"additional_qat_module_mapping": {
|
|
torch.nn.intrinsic.ConvBn2d: torch.nn.qat.ConvBn2d
|
|
},
|
|
|
|
# Additional fusion patterns
|
|
"additional_fusion_pattern": {
|
|
(torch.nn.BatchNorm2d, torch.nn.Conv2d): ConvReluFusionhandler
|
|
},
|
|
|
|
# Additional quantization patterns
|
|
"additional_quant_pattern": {
|
|
torch.nn.Conv2d: ConvReluQuantizeHandler,
|
|
(torch.nn.ReLU, torch.nn.Conv2d): ConvReluQuantizeHandler,
|
|
}
|
|
|
|
# By default, inputs and outputs of the graph are assumed to be in
|
|
# fp32. Providing `input_quantized_idxs` will set the inputs with the
|
|
# corresponding indices to be quantized. Providing
|
|
# `output_quantized_idxs` will set the outputs with the corresponding
|
|
# indices to be quantized.
|
|
"input_quantized_idxs": [0],
|
|
"output_quantized_idxs": [0],
|
|
}
|
|
|
|
|
|
Return:
|
|
A GraphModule with observer (configured by qconfig_dict), ready for calibration
|
|
|
|
Example:
|
|
```python
|
|
import torch
|
|
from torch.quantization import get_default_qconfig
|
|
from torch.quantization import prepare_fx
|
|
|
|
float_model.eval()
|
|
graph_module = torch.fx.symbolic_trace(float_model)
|
|
qconfig = get_default_qconfig('fbgemm')
|
|
def calibrate(model, data_loader):
|
|
model.eval()
|
|
with torch.no_grad():
|
|
for image, target in data_loader:
|
|
model(image)
|
|
|
|
qconfig_dict = {"": qconfig}
|
|
prepared_model = prepare_fx(graph_module, qconfig_dict)
|
|
# Run calibration
|
|
calibrate(prepared_model, sample_inference_data)
|
|
```
|
|
"""
|
|
torch._C._log_api_usage_once("quantization_api.quantize_fx.prepare_fx")
|
|
assert not model.training, 'prepare_fx only works for models in ' + \
|
|
'eval mode'
|
|
return _prepare_fx(model, qconfig_dict, prepare_custom_config_dict)
|
|
|
|
def prepare_qat_fx(
|
|
model: torch.nn.Module, qconfig_dict: Any,
|
|
prepare_custom_config_dict: Dict[str, Any] = None) -> GraphModule:
|
|
r""" Prepare a model for quantization aware training
|
|
Args:
|
|
`model`: torch.nn.Module model, must be in train mode
|
|
`qconfig_dict`: see :func:`~torch.quantization.prepare_fx`
|
|
`prepare_custom_config_dict`: see :func:`~torch.quantization.prepare_fx`
|
|
|
|
Return:
|
|
A GraphModule with fake quant modules (configured by qconfig_dict), ready for
|
|
quantization aware training
|
|
|
|
Example:
|
|
```python
|
|
import torch
|
|
from torch.quantization import get_default_qat_qconfig
|
|
from torch.quantization import prepare_fx
|
|
|
|
qconfig = get_default_qat_qconfig('fbgemm')
|
|
def train_loop(model, train_data):
|
|
model.train()
|
|
for image, target in data_loader:
|
|
...
|
|
|
|
float_model.train()
|
|
qconfig_dict = {"": qconfig}
|
|
prepared_model = prepare_fx(float_model, qconfig_dict)
|
|
# Run calibration
|
|
train_loop(prepared_model, train_loop)
|
|
```
|
|
"""
|
|
torch._C._log_api_usage_once("quantization_api.quantize_fx.prepare_qat_fx")
|
|
assert model.training, 'prepare_qat_fx only works for models in ' + \
|
|
'train mode'
|
|
return _prepare_fx(model, qconfig_dict, prepare_custom_config_dict)
|
|
|
|
def _convert_fx(
|
|
graph_module: GraphModule, debug: bool,
|
|
convert_custom_config_dict: Dict[str, Any] = None,
|
|
is_standalone_module: bool = False) -> GraphModule:
|
|
""" `is_standalone_module`: see docs in :func:`~torch.quantization.prepare_standalone_module_fx`
|
|
"""
|
|
_check_is_graph_module(graph_module)
|
|
quantizer = Quantizer()
|
|
return quantizer.convert(graph_module, debug, convert_custom_config_dict, is_standalone_module)
|
|
|
|
def convert_fx(
|
|
graph_module: GraphModule, debug: bool = False,
|
|
convert_custom_config_dict: Dict[str, Any] = None) -> GraphModule:
|
|
r""" Convert a calibrated or trained model to a quantized model
|
|
Args:
|
|
`graph_module`: A prepared and calibrated/trained model (GraphModule)
|
|
`debug`: flag for producing a debug friendly model (preserve weight attribute)
|
|
`convert_custom_config_dict`: dictionary for custom configurations for convert function:
|
|
convert_custom_config_dict = {
|
|
|
|
# addtional object (module/operator) mappings that will overwrite the default
|
|
# module mappingn
|
|
"additional_object_mapping": {
|
|
"static": {
|
|
FloatModule: QuantizedModule,
|
|
float_op: quantized_op
|
|
},
|
|
"dynamic": {
|
|
FloatModule: DynamicallyQuantizedModule,
|
|
float_op: dynamically_quantized_op
|
|
},
|
|
}
|
|
|
|
# user will manually define the corresponding quantized
|
|
# module class which has a from_observed class method that converts
|
|
# observed custom module to quantized custom module
|
|
"observed_to_quantized_custom_module_class": {
|
|
"static": {
|
|
ObservedCustomModule: QuantizedCustomModule
|
|
},
|
|
"dynamic": {
|
|
ObservedCustomModule: QuantizedCustomModule
|
|
},
|
|
"weight_only": {
|
|
ObservedCustomModule: QuantizedCustomModule
|
|
}
|
|
}
|
|
}
|
|
|
|
Return:
|
|
A quantized model (GraphModule)
|
|
|
|
Example:
|
|
```python
|
|
# prepared_model: the model after prepare_fx/prepare_qat_fx and calibration/training
|
|
quantized_model = convert_fx(prepared_model)
|
|
```
|
|
"""
|
|
torch._C._log_api_usage_once("quantization_api.quantize_fx.convert_fx")
|
|
return _convert_fx(graph_module, debug, convert_custom_config_dict)
|
|
|
|
def _convert_standalone_module_fx(
|
|
graph_module: GraphModule, debug: bool = False,
|
|
convert_custom_config_dict: Dict[str, Any] = None) -> GraphModule:
|
|
r""" [Internal use only] Convert a model produced by :func:`~torch.quantization.prepare_standalone_module_fx`
|
|
and convert it to a quantized model
|
|
|
|
Returns a quantized standalone module, whether input/output is quantized is
|
|
specified by prepare_custom_config_dict, with
|
|
input_quantized_idxs, output_quantized_idxs, please
|
|
see docs for prepare_fx for details
|
|
"""
|
|
return _convert_fx(graph_module, debug, convert_custom_config_dict, is_standalone_module=True)
|