mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
469 lines
16 KiB
Python
469 lines
16 KiB
Python
import torch
|
|
from torch import sparse
|
|
|
|
import itertools
|
|
import random
|
|
import unittest
|
|
from common import TestCase, run_tests
|
|
from numbers import Number
|
|
|
|
# triplet := (index type, value type, sparse type)
|
|
cpu_triplet = (
|
|
torch.LongTensor,
|
|
torch.DoubleTensor,
|
|
torch.sparse.DoubleTensor)
|
|
type_triplets = [cpu_triplet]
|
|
if torch.cuda.is_available():
|
|
cuda_triplet = (
|
|
torch.cuda.IntTensor,
|
|
torch.cuda.DoubleTensor,
|
|
torch.cuda.sparse.DoubleTensor)
|
|
type_triplets.append(cuda_triplet)
|
|
|
|
|
|
class TestSparse(TestCase):
|
|
|
|
@staticmethod
|
|
def _gen_sparse(d, nnz, with_size, is_cuda=False): # FIXME remove default is_cuda value to ensure coverage
|
|
if isinstance(with_size, Number):
|
|
v = torch.randn(nnz)
|
|
i = (torch.rand(d, nnz) * with_size).type(torch.LongTensor)
|
|
x = torch.sparse.DoubleTensor(i, v)
|
|
else:
|
|
v_size = [nnz] + list(with_size[d:])
|
|
v = torch.randn(*v_size)
|
|
i = torch.rand(d, nnz) * \
|
|
torch.Tensor(with_size[:d]).repeat(nnz, 1).transpose(0, 1)
|
|
i = i.type(torch.LongTensor)
|
|
x = torch.sparse.DoubleTensor(i, v, torch.Size(with_size))
|
|
|
|
if is_cuda:
|
|
return x.cuda(), i.cuda(), v.cuda()
|
|
else:
|
|
return x, i, v
|
|
|
|
def test_basic(self):
|
|
for is_cuda in [False, True] if torch.cuda.is_available() else [False]:
|
|
x, i, v = self._gen_sparse(3, 10, 100, is_cuda)
|
|
|
|
self.assertEqual(i, x.indices())
|
|
self.assertEqual(v, x.values())
|
|
|
|
x, i, v = self._gen_sparse(3, 10, [100, 100, 100], is_cuda)
|
|
self.assertEqual(i, x.indices())
|
|
self.assertEqual(v, x.values())
|
|
self.assertEqual(x.ndimension(), 3)
|
|
self.assertEqual(x.nnz(), 10)
|
|
for i in range(3):
|
|
self.assertEqual(x.size(i), 100)
|
|
|
|
for _, _, SparseTensor in type_triplets:
|
|
# Make sure we can access empty indices / values
|
|
x = SparseTensor()
|
|
self.assertEqual(x.indices().numel(), 0)
|
|
self.assertEqual(x.values().numel(), 0)
|
|
|
|
def test_to_dense(self):
|
|
for IndexTensor, ValueTensor, SparseTensor in type_triplets:
|
|
i = IndexTensor([
|
|
[0, 1, 2, 2],
|
|
[0, 0, 0, 3],
|
|
[0, 0, 1, 4],
|
|
])
|
|
v = ValueTensor([2, 1, 3, 4])
|
|
x = SparseTensor(i, v, torch.Size([3, 4, 5]))
|
|
res = ValueTensor([
|
|
[[2, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0]],
|
|
[[1, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0]],
|
|
[[0, 3, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 4]],
|
|
])
|
|
|
|
x.to_dense() # Tests double to_dense for memory corruption
|
|
x.to_dense()
|
|
x.to_dense()
|
|
self.assertEqual(res, x.to_dense())
|
|
|
|
def test_to_dense_hybrid(self):
|
|
for IndexTensor, ValueTensor, SparseTensor in type_triplets:
|
|
i = IndexTensor([
|
|
[0, 1, 2, 2],
|
|
[0, 0, 0, 3],
|
|
])
|
|
v = ValueTensor([[2, 3], [1, 2], [3, 4], [4, 5]])
|
|
x = SparseTensor(i, v, torch.Size([3, 4, 2]))
|
|
res = ValueTensor([
|
|
[[2, 3],
|
|
[0, 0],
|
|
[0, 0],
|
|
[0, 0]],
|
|
[[1, 2],
|
|
[0, 0],
|
|
[0, 0],
|
|
[0, 0]],
|
|
[[3, 4],
|
|
[0, 0],
|
|
[0, 0],
|
|
[4, 5]],
|
|
])
|
|
|
|
x.to_dense() # Tests double to_dense for memory corruption
|
|
x.to_dense()
|
|
x.to_dense()
|
|
self.assertEqual(res, x.to_dense())
|
|
|
|
def test_contig(self):
|
|
for IndexTensor, ValueTensor, SparseTensor in type_triplets:
|
|
i = IndexTensor([
|
|
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
|
|
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
|
|
])
|
|
v = ValueTensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
|
|
x = SparseTensor(i, v, torch.Size([100, 100]))
|
|
exp_i = IndexTensor([
|
|
[0, 1, 6, 14, 27, 35, 39, 40, 66, 71],
|
|
[31, 92, 65, 50, 34, 62, 22, 56, 74, 89],
|
|
])
|
|
exp_v = ValueTensor([2, 1, 6, 4, 10, 3, 5, 9, 8, 7])
|
|
x.contiguous()
|
|
self.assertEqual(exp_i, x.indices())
|
|
self.assertEqual(exp_v, x.values())
|
|
|
|
i = IndexTensor([
|
|
[2, 0, 2, 1],
|
|
[0, 0, 3, 0],
|
|
[1, 0, 4, 0],
|
|
])
|
|
v = ValueTensor([3, 2, 4, 1])
|
|
x = SparseTensor(i, v, torch.Size([3, 4, 5]))
|
|
exp_i = IndexTensor([
|
|
[0, 1, 2, 2],
|
|
[0, 0, 0, 3],
|
|
[0, 0, 1, 4],
|
|
])
|
|
exp_v = ValueTensor([2, 1, 3, 4])
|
|
|
|
x.contiguous()
|
|
self.assertEqual(exp_i, x.indices())
|
|
self.assertEqual(exp_v, x.values())
|
|
|
|
# Duplicate indices
|
|
i = IndexTensor([
|
|
[0, 0, 2, 0],
|
|
[0, 0, 3, 0],
|
|
[0, 0, 4, 0],
|
|
])
|
|
v = ValueTensor([3, 2, 4, 1])
|
|
x = SparseTensor(i, v, torch.Size([3, 4, 5]))
|
|
exp_i = IndexTensor([
|
|
[0, 2],
|
|
[0, 3],
|
|
[0, 4],
|
|
])
|
|
exp_v = ValueTensor([6, 4])
|
|
|
|
x.contiguous()
|
|
self.assertEqual(exp_i, x.indices())
|
|
self.assertEqual(exp_v, x.values())
|
|
|
|
def test_contig_hybrid(self):
|
|
for IndexTensor, ValueTensor, SparseTensor in type_triplets:
|
|
i = IndexTensor([
|
|
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
|
|
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
|
|
])
|
|
v = ValueTensor([
|
|
[1, 2], [2, 3], [3, 4], [4, 5], [5, 6],
|
|
[6, 7], [7, 8], [8, 9], [9, 10], [10, 11],
|
|
])
|
|
x = SparseTensor(i, v, torch.Size([100, 100, 2]))
|
|
exp_i = IndexTensor([
|
|
[0, 1, 6, 14, 27, 35, 39, 40, 66, 71],
|
|
[31, 92, 65, 50, 34, 62, 22, 56, 74, 89],
|
|
])
|
|
exp_v = ValueTensor([
|
|
[2, 3], [1, 2], [6, 7], [4, 5], [10, 11],
|
|
[3, 4], [5, 6], [9, 10], [8, 9], [7, 8],
|
|
])
|
|
x.contiguous()
|
|
self.assertEqual(exp_i, x.indices())
|
|
self.assertEqual(exp_v, x.values())
|
|
|
|
i = IndexTensor([
|
|
[2, 0, 2, 1],
|
|
[0, 0, 3, 0],
|
|
[1, 0, 4, 0],
|
|
])
|
|
v = ValueTensor([[3, 3, 3], [2, 2, 2], [4, 4, 4], [1, 1, 1]])
|
|
x = SparseTensor(i, v, torch.Size([3, 4, 5, 3]))
|
|
exp_i = IndexTensor([
|
|
[0, 1, 2, 2],
|
|
[0, 0, 0, 3],
|
|
[0, 0, 1, 4],
|
|
])
|
|
exp_v = ValueTensor([[2, 2, 2], [1, 1, 1], [3, 3, 3], [4, 4, 4]])
|
|
|
|
x.contiguous()
|
|
self.assertEqual(exp_i, x.indices())
|
|
self.assertEqual(exp_v, x.values())
|
|
|
|
# Duplicate indices
|
|
i = IndexTensor([
|
|
[0, 0, 2, 0],
|
|
[0, 0, 3, 0],
|
|
[0, 0, 4, 0],
|
|
])
|
|
v = ValueTensor([[3, 2, 3], [2, 1, 1], [4, 3, 4], [1, 1, 1]])
|
|
x = SparseTensor(i, v, torch.Size([3, 4, 5, 3]))
|
|
exp_i = IndexTensor([
|
|
[0, 2],
|
|
[0, 3],
|
|
[0, 4],
|
|
])
|
|
exp_v = ValueTensor([[6, 4, 5], [4, 3, 4]])
|
|
|
|
x.contiguous()
|
|
self.assertEqual(exp_i, x.indices())
|
|
self.assertEqual(exp_v, x.values())
|
|
|
|
def test_transpose(self):
|
|
x = self._gen_sparse(4, 20, 5)[0]
|
|
y = x.to_dense()
|
|
|
|
for i, j in itertools.combinations(range(4), 2):
|
|
x = x.transpose_(i, j)
|
|
y = y.transpose(i, j)
|
|
self.assertEqual(x.to_dense(), y)
|
|
|
|
x = x.transpose(i, j)
|
|
y = y.transpose(i, j)
|
|
self.assertEqual(x.to_dense(), y)
|
|
|
|
def test_mm(self):
|
|
def test_shape(di, dj, dk):
|
|
x, _, _ = self._gen_sparse(2, 20, [di, dj])
|
|
t = torch.randn(di, dk)
|
|
y = torch.randn(dj, dk)
|
|
alpha = random.random()
|
|
beta = random.random()
|
|
|
|
expected = torch.addmm(alpha, t, beta, x.to_dense(), y)
|
|
res = torch.addmm(alpha, t, beta, x, y)
|
|
self.assertEqual(res, expected)
|
|
|
|
expected = torch.addmm(t, x.to_dense(), y)
|
|
res = torch.addmm(t, x, y)
|
|
self.assertEqual(res, expected)
|
|
|
|
expected = torch.mm(x.to_dense(), y)
|
|
res = torch.mm(x, y)
|
|
self.assertEqual(res, expected)
|
|
|
|
test_shape(10, 100, 100)
|
|
test_shape(100, 1000, 200)
|
|
test_shape(64, 10000, 300)
|
|
|
|
def test_saddmm(self):
|
|
def test_shape(di, dj, dk):
|
|
x = self._gen_sparse(2, 20, [di, dj])[0]
|
|
t = self._gen_sparse(2, 20, [di, dk])[0]
|
|
y = torch.randn(dj, dk)
|
|
alpha = random.random()
|
|
beta = random.random()
|
|
|
|
expected = torch.addmm(alpha, t.to_dense(), beta, x.to_dense(), y)
|
|
res = torch.saddmm(alpha, t, beta, x, y)
|
|
self.assertEqual(res.to_dense(), expected)
|
|
|
|
expected = torch.addmm(t.to_dense(), x.to_dense(), y)
|
|
res = torch.saddmm(t, x, y)
|
|
self.assertEqual(res.to_dense(), expected)
|
|
|
|
expected = torch.mm(x.to_dense(), y)
|
|
res = torch.smm(x, y)
|
|
self.assertEqual(res.to_dense(), expected)
|
|
|
|
test_shape(7, 5, 3)
|
|
test_shape(1000, 100, 100)
|
|
test_shape(3000, 64, 300)
|
|
|
|
def test_dsmm(self):
|
|
def test_shape(di, dj, dk):
|
|
for is_cuda in [False, True]:
|
|
x = self._gen_sparse(2, 20, [di, dj], is_cuda)[0]
|
|
y = torch.randn(dj, dk)
|
|
if is_cuda:
|
|
y = y.cuda()
|
|
|
|
expected = torch.mm(x.to_dense(), y)
|
|
res = torch.dsmm(x, y)
|
|
self.assertEqual(res, expected)
|
|
|
|
test_shape(7, 5, 3)
|
|
test_shape(1000, 100, 100)
|
|
test_shape(3000, 64, 300)
|
|
|
|
def _test_spadd_shape(self, shape_i, shape_v=None):
|
|
for is_cuda in [False, True]:
|
|
shape = shape_i + (shape_v or [])
|
|
x, _, _ = self._gen_sparse(len(shape_i), 10, shape, is_cuda)
|
|
y = torch.randn(*shape)
|
|
if is_cuda:
|
|
y = y.cuda()
|
|
r = random.random()
|
|
|
|
expected = y + r * x.to_dense()
|
|
res = torch.add(y, r, x)
|
|
|
|
self.assertEqual(res, expected)
|
|
|
|
# Non contiguous dense tensor
|
|
s = list(shape)
|
|
s[0] = shape[-1]
|
|
s[-1] = shape[0]
|
|
y = torch.randn(*s)
|
|
if is_cuda:
|
|
y = y.cuda()
|
|
y.transpose_(0, len(s) - 1)
|
|
r = random.random()
|
|
|
|
expected = y + r * x.to_dense()
|
|
res = torch.add(y, r, x)
|
|
|
|
self.assertEqual(res, expected)
|
|
|
|
def test_spadd(self):
|
|
self._test_spadd_shape([5, 6])
|
|
self._test_spadd_shape([10, 10, 10])
|
|
self._test_spadd_shape([50, 30, 20])
|
|
self._test_spadd_shape([5, 5, 5, 5, 5, 5])
|
|
|
|
def test_spadd_hybrid(self):
|
|
self._test_spadd_shape([5, 6], [2, 3])
|
|
self._test_spadd_shape([10, 10, 10], [3])
|
|
self._test_spadd_shape([50, 30, 20], [2])
|
|
self._test_spadd_shape([5, 5, 5, 5, 5, 5], [2])
|
|
|
|
def _test_basic_ops_shape(self, shape_i, shape_v=None):
|
|
for is_cuda in [False, True]:
|
|
shape = shape_i + (shape_v or [])
|
|
x1, _, _ = self._gen_sparse(len(shape_i), 9, shape, is_cuda)
|
|
x2, _, _ = self._gen_sparse(len(shape_i), 12, shape, is_cuda)
|
|
|
|
y1 = x1 + x2
|
|
y2 = x1.clone()
|
|
y2.add_(x2)
|
|
expected = x1.to_dense() + x2.to_dense()
|
|
self.assertEqual(y1.to_dense(), expected)
|
|
self.assertEqual(y2.to_dense(), expected)
|
|
|
|
y1 = x1 - x2
|
|
y2 = x1.clone()
|
|
y2.sub_(x2)
|
|
expected = x1.to_dense() - x2.to_dense()
|
|
self.assertEqual(y1.to_dense(), expected)
|
|
self.assertEqual(y2.to_dense(), expected)
|
|
|
|
y1 = x1 * x2
|
|
y2 = x1.clone()
|
|
y2.mul_(x2)
|
|
expected = x1.to_dense() * x2.to_dense()
|
|
self.assertEqual(y1.to_dense(), expected)
|
|
self.assertEqual(y2.to_dense(), expected)
|
|
|
|
y1 = x1 * 37.5
|
|
y2 = x1.clone()
|
|
y2.mul_(37.5)
|
|
expected = x1.to_dense() * 37.5
|
|
self.assertEqual(y1.to_dense(), expected)
|
|
self.assertEqual(y2.to_dense(), expected)
|
|
|
|
y1 = x1 / 37.5
|
|
y2 = x1.clone()
|
|
y2.div_(37.5)
|
|
expected = x1.to_dense() / 37.5
|
|
self.assertEqual(y1.to_dense(), expected)
|
|
self.assertEqual(y2.to_dense(), expected)
|
|
|
|
y = x1.clone()
|
|
y.zero_()
|
|
expected = torch.zeros(x1.size())
|
|
self.assertEqual(y.to_dense(), expected)
|
|
|
|
def test_basic_ops(self):
|
|
self._test_basic_ops_shape([5, 6])
|
|
self._test_basic_ops_shape([10, 10, 10])
|
|
self._test_basic_ops_shape([50, 30, 20])
|
|
self._test_basic_ops_shape([5, 5, 5, 5, 5, 5])
|
|
|
|
def test_basic_ops_hybrid(self):
|
|
self._test_basic_ops_shape([5, 6], [2, 3])
|
|
self._test_basic_ops_shape([10, 10, 10], [3])
|
|
self._test_basic_ops_shape([50, 30, 20], [2])
|
|
self._test_basic_ops_shape([5, 5, 5, 5, 5, 5], [2])
|
|
|
|
def _test_sparse_mask_shape(self, shape_i, shape_v=None):
|
|
for is_cuda in [False, True]:
|
|
shape = shape_i + (shape_v or [])
|
|
x1, _, _ = self._gen_sparse(len(shape_i), 9, shape, is_cuda)
|
|
x2, _, _ = self._gen_sparse(len(shape_i), 12, shape, is_cuda)
|
|
|
|
y1 = x1 + x2
|
|
y2 = x1.clone()
|
|
y2.add_(x2)
|
|
expected = x1.to_dense() + x2.to_dense()
|
|
self.assertEqual(y1.to_dense(), expected)
|
|
self.assertEqual(y2.to_dense(), expected)
|
|
|
|
def test_sparse_mask(self):
|
|
for IndexTensor, ValueTensor, SparseTensor in type_triplets:
|
|
i = IndexTensor([
|
|
[1, 3, 3, 0, 4],
|
|
[2, 1, 1, 2, 3],
|
|
])
|
|
v = ValueTensor([1, 2, 3, 4, 5])
|
|
x = SparseTensor(i, v, torch.Size([5, 4]))
|
|
dense = ValueTensor([
|
|
[1, 2, 3, 4],
|
|
[5, 6, 7, 8],
|
|
[9, 10, 11, 12],
|
|
[13, 14, 15, 16],
|
|
[17, 18, 19, 20],
|
|
])
|
|
exp_v = ValueTensor([7, 14, 14, 3, 20])
|
|
expected = SparseTensor(i, exp_v, torch.Size([5, 4]))
|
|
res = dense.sparse_mask(x)
|
|
self.assertEqual(res, expected)
|
|
|
|
def test_sparse_mask_hybrid(self):
|
|
for IndexTensor, ValueTensor, SparseTensor in type_triplets:
|
|
i = IndexTensor([
|
|
[1, 3, 3, 0, 4],
|
|
[2, 1, 1, 2, 3],
|
|
])
|
|
v = ValueTensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6]])
|
|
x = SparseTensor(i, v, torch.Size([5, 4, 2]))
|
|
dense = ValueTensor([
|
|
[[1, 3], [2, 2], [3, 3], [4, 2]],
|
|
[[5, 7], [6, 7], [7, 9], [8, 9]],
|
|
[[9, 2], [10, 4], [11, 1], [12, 3]],
|
|
[[13, 5], [14, 1], [15, 1], [16, 6]],
|
|
[[17, 7], [18, 2], [19, 7], [20, 1]],
|
|
])
|
|
exp_v = ValueTensor([[7, 9], [14, 1], [14, 1], [3, 3], [20, 1]])
|
|
expected = SparseTensor(i, exp_v, torch.Size([5, 4, 2]))
|
|
res = dense.sparse_mask(x)
|
|
self.assertEqual(res, expected)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|