mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-08 07:39:33 +01:00
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings. I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :) Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519 Approved by: https://github.com/ezyang
302 lines
12 KiB
Python
302 lines
12 KiB
Python
import torch
|
|
from torch import Tensor
|
|
|
|
from typing import Iterator, Iterable, Optional, Sequence, List, TypeVar, Generic, Sized, Union
|
|
|
|
__all__ = [
|
|
"BatchSampler",
|
|
"RandomSampler",
|
|
"Sampler",
|
|
"SequentialSampler",
|
|
"SubsetRandomSampler",
|
|
"WeightedRandomSampler",
|
|
]
|
|
|
|
T_co = TypeVar('T_co', covariant=True)
|
|
|
|
|
|
class Sampler(Generic[T_co]):
|
|
r"""Base class for all Samplers.
|
|
|
|
Every Sampler subclass has to provide an :meth:`__iter__` method, providing a
|
|
way to iterate over indices or lists of indices (batches) of dataset elements, and a :meth:`__len__` method
|
|
that returns the length of the returned iterators.
|
|
|
|
Args:
|
|
data_source (Dataset): This argument is not used and will be removed in 2.2.0.
|
|
You may still have custom implementation that utilizes it.
|
|
|
|
Example:
|
|
>>> # xdoctest: +SKIP
|
|
>>> class AccedingSequenceLengthSampler(Sampler[int]):
|
|
>>> def __init__(self, data: List[str]) -> None:
|
|
>>> self.data = data
|
|
>>>
|
|
>>> def __len__(self) -> int:
|
|
>>> return len(self.data)
|
|
>>>
|
|
>>> def __iter__(self) -> Iterator[int]:
|
|
>>> sizes = torch.tensor([len(x) for x in self.data])
|
|
>>> yield from torch.argsort(sizes).tolist()
|
|
>>>
|
|
>>> class AccedingSequenceLengthBatchSampler(Sampler[List[int]]):
|
|
>>> def __init__(self, data: List[str], batch_size: int) -> None:
|
|
>>> self.data = data
|
|
>>> self.batch_size = batch_size
|
|
>>>
|
|
>>> def __len__(self) -> int:
|
|
>>> return (len(self.data) + self.batch_size - 1) // self.batch_size
|
|
>>>
|
|
>>> def __iter__(self) -> Iterator[List[int]]:
|
|
>>> sizes = torch.tensor([len(x) for x in self.data])
|
|
>>> for batch in torch.chunk(torch.argsort(sizes), len(self)):
|
|
>>> yield batch.tolist()
|
|
|
|
.. note:: The :meth:`__len__` method isn't strictly required by
|
|
:class:`~torch.utils.data.DataLoader`, but is expected in any
|
|
calculation involving the length of a :class:`~torch.utils.data.DataLoader`.
|
|
"""
|
|
|
|
def __init__(self, data_source: Optional[Sized] = None) -> None:
|
|
if data_source is not None:
|
|
import warnings
|
|
|
|
warnings.warn("`data_source` argument is not used and will be removed in 2.2.0."
|
|
"You may still have custom implementation that utilizes it.")
|
|
|
|
def __iter__(self) -> Iterator[T_co]:
|
|
raise NotImplementedError
|
|
|
|
# NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ]
|
|
#
|
|
# Many times we have an abstract class representing a collection/iterable of
|
|
# data, e.g., `torch.utils.data.Sampler`, with its subclasses optionally
|
|
# implementing a `__len__` method. In such cases, we must make sure to not
|
|
# provide a default implementation, because both straightforward default
|
|
# implementations have their issues:
|
|
#
|
|
# + `return NotImplemented`:
|
|
# Calling `len(subclass_instance)` raises:
|
|
# TypeError: 'NotImplementedType' object cannot be interpreted as an integer
|
|
#
|
|
# + `raise NotImplementedError()`:
|
|
# This prevents triggering some fallback behavior. E.g., the built-in
|
|
# `list(X)` tries to call `len(X)` first, and executes a different code
|
|
# path if the method is not found or `NotImplemented` is returned, while
|
|
# raising an `NotImplementedError` will propagate and and make the call
|
|
# fail where it could have use `__iter__` to complete the call.
|
|
#
|
|
# Thus, the only two sensible things to do are
|
|
#
|
|
# + **not** provide a default `__len__`.
|
|
#
|
|
# + raise a `TypeError` instead, which is what Python uses when users call
|
|
# a method that is not defined on an object.
|
|
# (@ssnl verifies that this works on at least Python 3.7.)
|
|
|
|
|
|
class SequentialSampler(Sampler[int]):
|
|
r"""Samples elements sequentially, always in the same order.
|
|
|
|
Args:
|
|
data_source (Dataset): dataset to sample from
|
|
"""
|
|
data_source: Sized
|
|
|
|
def __init__(self, data_source: Sized) -> None:
|
|
self.data_source = data_source
|
|
|
|
def __iter__(self) -> Iterator[int]:
|
|
return iter(range(len(self.data_source)))
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.data_source)
|
|
|
|
|
|
class RandomSampler(Sampler[int]):
|
|
r"""Samples elements randomly. If without replacement, then sample from a shuffled dataset.
|
|
If with replacement, then user can specify :attr:`num_samples` to draw.
|
|
|
|
Args:
|
|
data_source (Dataset): dataset to sample from
|
|
replacement (bool): samples are drawn on-demand with replacement if ``True``, default=``False``
|
|
num_samples (int): number of samples to draw, default=`len(dataset)`.
|
|
generator (Generator): Generator used in sampling.
|
|
"""
|
|
data_source: Sized
|
|
replacement: bool
|
|
|
|
def __init__(self, data_source: Sized, replacement: bool = False,
|
|
num_samples: Optional[int] = None, generator=None) -> None:
|
|
self.data_source = data_source
|
|
self.replacement = replacement
|
|
self._num_samples = num_samples
|
|
self.generator = generator
|
|
|
|
if not isinstance(self.replacement, bool):
|
|
raise TypeError(f"replacement should be a boolean value, but got replacement={self.replacement}")
|
|
|
|
if not isinstance(self.num_samples, int) or self.num_samples <= 0:
|
|
raise ValueError(f"num_samples should be a positive integer value, but got num_samples={self.num_samples}")
|
|
|
|
@property
|
|
def num_samples(self) -> int:
|
|
# dataset size might change at runtime
|
|
if self._num_samples is None:
|
|
return len(self.data_source)
|
|
return self._num_samples
|
|
|
|
def __iter__(self) -> Iterator[int]:
|
|
n = len(self.data_source)
|
|
if self.generator is None:
|
|
seed = int(torch.empty((), dtype=torch.int64).random_().item())
|
|
generator = torch.Generator()
|
|
generator.manual_seed(seed)
|
|
else:
|
|
generator = self.generator
|
|
|
|
if self.replacement:
|
|
for _ in range(self.num_samples // 32):
|
|
yield from map(int, torch.randint(high=n, size=(32,), dtype=torch.int64, generator=generator).numpy())
|
|
final_samples = torch.randint(high=n, size=(self.num_samples % 32,), dtype=torch.int64, generator=generator)
|
|
yield from map(int, final_samples.numpy())
|
|
else:
|
|
for _ in range(self.num_samples // n):
|
|
yield from map(int, torch.randperm(n, generator=generator).numpy())
|
|
yield from map(int, torch.randperm(n, generator=generator)[:self.num_samples % n].numpy())
|
|
|
|
def __len__(self) -> int:
|
|
return self.num_samples
|
|
|
|
|
|
class SubsetRandomSampler(Sampler[int]):
|
|
r"""Samples elements randomly from a given list of indices, without replacement.
|
|
|
|
Args:
|
|
indices (sequence): a sequence of indices
|
|
generator (Generator): Generator used in sampling.
|
|
"""
|
|
indices: Sequence[int]
|
|
|
|
def __init__(self, indices: Sequence[int], generator=None) -> None:
|
|
self.indices = indices
|
|
self.generator = generator
|
|
|
|
def __iter__(self) -> Iterator[int]:
|
|
for i in torch.randperm(len(self.indices), generator=self.generator):
|
|
yield self.indices[i]
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.indices)
|
|
|
|
|
|
class WeightedRandomSampler(Sampler[int]):
|
|
r"""Samples elements from ``[0,..,len(weights)-1]`` with given probabilities (weights).
|
|
|
|
Args:
|
|
weights (sequence) : a sequence of weights, not necessary summing up to one
|
|
num_samples (int): number of samples to draw
|
|
replacement (bool): if ``True``, samples are drawn with replacement.
|
|
If not, they are drawn without replacement, which means that when a
|
|
sample index is drawn for a row, it cannot be drawn again for that row.
|
|
generator (Generator): Generator used in sampling.
|
|
|
|
Example:
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
|
>>> list(WeightedRandomSampler([0.1, 0.9, 0.4, 0.7, 3.0, 0.6], 5, replacement=True))
|
|
[4, 4, 1, 4, 5]
|
|
>>> list(WeightedRandomSampler([0.9, 0.4, 0.05, 0.2, 0.3, 0.1], 5, replacement=False))
|
|
[0, 1, 4, 3, 2]
|
|
"""
|
|
weights: Tensor
|
|
num_samples: int
|
|
replacement: bool
|
|
|
|
def __init__(self, weights: Sequence[float], num_samples: int,
|
|
replacement: bool = True, generator=None) -> None:
|
|
if not isinstance(num_samples, int) or isinstance(num_samples, bool) or \
|
|
num_samples <= 0:
|
|
raise ValueError(f"num_samples should be a positive integer value, but got num_samples={num_samples}")
|
|
if not isinstance(replacement, bool):
|
|
raise ValueError(f"replacement should be a boolean value, but got replacement={replacement}")
|
|
|
|
weights_tensor = torch.as_tensor(weights, dtype=torch.double)
|
|
if len(weights_tensor.shape) != 1:
|
|
raise ValueError("weights should be a 1d sequence but given "
|
|
f"weights have shape {tuple(weights_tensor.shape)}")
|
|
|
|
self.weights = weights_tensor
|
|
self.num_samples = num_samples
|
|
self.replacement = replacement
|
|
self.generator = generator
|
|
|
|
def __iter__(self) -> Iterator[int]:
|
|
rand_tensor = torch.multinomial(self.weights, self.num_samples, self.replacement, generator=self.generator)
|
|
yield from iter(rand_tensor.tolist())
|
|
|
|
def __len__(self) -> int:
|
|
return self.num_samples
|
|
|
|
|
|
class BatchSampler(Sampler[List[int]]):
|
|
r"""Wraps another sampler to yield a mini-batch of indices.
|
|
|
|
Args:
|
|
sampler (Sampler or Iterable): Base sampler. Can be any iterable object
|
|
batch_size (int): Size of mini-batch.
|
|
drop_last (bool): If ``True``, the sampler will drop the last batch if
|
|
its size would be less than ``batch_size``
|
|
|
|
Example:
|
|
>>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=False))
|
|
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
|
|
>>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=True))
|
|
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
|
|
"""
|
|
|
|
def __init__(self, sampler: Union[Sampler[int], Iterable[int]], batch_size: int, drop_last: bool) -> None:
|
|
# Since collections.abc.Iterable does not check for `__getitem__`, which
|
|
# is one way for an object to be an iterable, we don't do an `isinstance`
|
|
# check here.
|
|
if not isinstance(batch_size, int) or isinstance(batch_size, bool) or \
|
|
batch_size <= 0:
|
|
raise ValueError(f"batch_size should be a positive integer value, but got batch_size={batch_size}")
|
|
if not isinstance(drop_last, bool):
|
|
raise ValueError(f"drop_last should be a boolean value, but got drop_last={drop_last}")
|
|
self.sampler = sampler
|
|
self.batch_size = batch_size
|
|
self.drop_last = drop_last
|
|
|
|
def __iter__(self) -> Iterator[List[int]]:
|
|
# Implemented based on the benchmarking in https://github.com/pytorch/pytorch/pull/76951
|
|
if self.drop_last:
|
|
sampler_iter = iter(self.sampler)
|
|
while True:
|
|
try:
|
|
batch = [next(sampler_iter) for _ in range(self.batch_size)]
|
|
yield batch
|
|
except StopIteration:
|
|
break
|
|
else:
|
|
batch = [0] * self.batch_size
|
|
idx_in_batch = 0
|
|
for idx in self.sampler:
|
|
batch[idx_in_batch] = idx
|
|
idx_in_batch += 1
|
|
if idx_in_batch == self.batch_size:
|
|
yield batch
|
|
idx_in_batch = 0
|
|
batch = [0] * self.batch_size
|
|
if idx_in_batch > 0:
|
|
yield batch[:idx_in_batch]
|
|
|
|
def __len__(self) -> int:
|
|
# Can only be called if self.sampler has __len__ implemented
|
|
# We cannot enforce this condition, so we turn off typechecking for the
|
|
# implementation below.
|
|
# Somewhat related: see NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ]
|
|
if self.drop_last:
|
|
return len(self.sampler) // self.batch_size # type: ignore[arg-type]
|
|
else:
|
|
return (len(self.sampler) + self.batch_size - 1) // self.batch_size # type: ignore[arg-type]
|