mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings. I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :) Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519 Approved by: https://github.com/ezyang
733 lines
30 KiB
Python
733 lines
30 KiB
Python
import dataclasses
|
|
import itertools
|
|
import operator
|
|
from typing import Any, Callable, Dict, List, Tuple
|
|
|
|
import torch
|
|
from torch.fx import Graph, GraphModule, Node
|
|
from torch.fx.subgraph_rewriter import replace_pattern_with_filters
|
|
import torch.nn.functional as F
|
|
from torch.ao.quantization.fx._decomposed import quantized_decomposed_lib # noqa: F401
|
|
from torch.ao.quantization.quantizer import (
|
|
DerivedQuantizationSpec,
|
|
EdgeOrNode,
|
|
SharedQuantizationSpec,
|
|
QuantizationSpecBase,
|
|
)
|
|
from .utils import (
|
|
fold_bn_weights_into_conv_node,
|
|
get_aten_graph_module,
|
|
)
|
|
|
|
# Example inputs for `_conv2d_bn_pattern`, `_qat_conv2d_bn_pattern`, and `_qat_conv2d_bn_pattern_no_bias`
|
|
_conv2d_bn_pattern_example_inputs = (
|
|
torch.randn(1, 1, 3, 3), # x
|
|
torch.randn(1, 1, 1, 1), # conv_weight
|
|
torch.randn(1), # conv_bias
|
|
torch.randn(1), # bn_weight
|
|
torch.randn(1), # bn_bias
|
|
torch.randn(1), # bn_running_mean
|
|
torch.randn(1), # bn_running_var
|
|
)
|
|
|
|
# Example inputs for both `_quantized_qat_conv2d_bn_pattern` and `_folded_quantized_qat_conv2d_bn_pattern`
|
|
_quantized_conv2d_bn_pattern_example_inputs = (
|
|
torch.randn(1, 1, 3, 3), # x
|
|
torch.randn(1, 1, 1, 1), # conv_weight
|
|
torch.randn(1), # bn_weight
|
|
torch.randn(1), # bn_bias
|
|
torch.randn(1), # bn_running_mean
|
|
torch.randn(1), # bn_running_var
|
|
)
|
|
|
|
def _get_quantized_conv2d_bn_pattern_example_inputs_kwargs(
|
|
is_per_channel: bool,
|
|
has_bias: bool,
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Optional example inputs for both `_quantized_qat_conv2d_bn_pattern`
|
|
and `_folded_quantized_qat_conv2d_bn_pattern`, expressed as kwargs.
|
|
|
|
Note that weight_scale and weight_zero_point are only used when
|
|
`is_per_channel` is True. This is because for per tensor quantization,
|
|
scale and zero point are hard coded into quantize/dequantize ops
|
|
in the pattern.
|
|
"""
|
|
kwargs = {}
|
|
if is_per_channel:
|
|
kwargs["weight_scale"] = torch.tensor([1], dtype=torch.float)
|
|
kwargs["weight_zero_point"] = torch.tensor([0], dtype=torch.int)
|
|
if has_bias:
|
|
kwargs["conv_bias"] = torch.randn(1)
|
|
return kwargs
|
|
|
|
def _conv2d_bn_pattern(
|
|
x: torch.Tensor,
|
|
conv_weight: torch.Tensor,
|
|
conv_bias: torch.Tensor,
|
|
bn_weight: torch.Tensor,
|
|
bn_bias: torch.Tensor,
|
|
bn_running_mean: torch.Tensor,
|
|
bn_running_var: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
x = F.conv2d(x, conv_weight, conv_bias)
|
|
x = F.batch_norm(x, bn_running_mean, bn_running_var, bn_weight, bn_bias, training=True)
|
|
return x
|
|
|
|
# TODO: merge this with the `no_conv_bias` case
|
|
def _qat_conv2d_bn_pattern(
|
|
x: torch.Tensor,
|
|
conv_weight: torch.Tensor,
|
|
conv_bias: torch.Tensor,
|
|
bn_weight: torch.Tensor,
|
|
bn_bias: torch.Tensor,
|
|
bn_running_mean: torch.Tensor,
|
|
bn_running_var: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Approximated method to fuse conv and bn. It requires only one forward pass.
|
|
conv_orig = conv / scale_factor where scale_factor = bn.weight / running_std.
|
|
This is based on `nniqat.ConvBn2d._forward_approximate`.
|
|
"""
|
|
# TODO: allow setting eps
|
|
bn_eps = 1e-5
|
|
running_std = torch.sqrt(bn_running_var + bn_eps)
|
|
scale_factor = bn_weight / running_std
|
|
weight_shape = [1] * len(conv_weight.shape)
|
|
weight_shape[0] = -1
|
|
bias_shape = [1] * len(conv_weight.shape)
|
|
bias_shape[1] = -1
|
|
scaled_weight = conv_weight * scale_factor.reshape(weight_shape)
|
|
zero_bias = torch.zeros_like(conv_bias, dtype=x.dtype)
|
|
x = F.conv2d(x, scaled_weight, zero_bias)
|
|
x = x / scale_factor.reshape(bias_shape)
|
|
x = x + conv_bias.reshape(bias_shape)
|
|
x = F.batch_norm(x, bn_running_mean, bn_running_var, bn_weight, bn_bias, training=True, eps=bn_eps)
|
|
return x
|
|
|
|
def _qat_conv2d_bn_pattern_no_conv_bias(
|
|
x: torch.Tensor,
|
|
conv_weight: torch.Tensor,
|
|
# Not used, only for matching convenience
|
|
conv_bias: torch.Tensor,
|
|
bn_weight: torch.Tensor,
|
|
bn_bias: torch.Tensor,
|
|
bn_running_mean: torch.Tensor,
|
|
bn_running_var: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Same as `_qat_conv2d_bn_pattern`, but handles the case with no conv bias.
|
|
"""
|
|
# TODO: allow setting eps
|
|
bn_eps = 1e-5
|
|
running_std = torch.sqrt(bn_running_var + bn_eps)
|
|
scale_factor = bn_weight / running_std
|
|
weight_shape = [1] * len(conv_weight.shape)
|
|
weight_shape[0] = -1
|
|
bias_shape = [1] * len(conv_weight.shape)
|
|
bias_shape[1] = -1
|
|
scaled_weight = conv_weight * scale_factor.reshape(weight_shape)
|
|
x = F.conv2d(x, scaled_weight, None)
|
|
x = x / scale_factor.reshape(bias_shape)
|
|
x = F.batch_norm(x, bn_running_mean, bn_running_var, bn_weight, bn_bias, training=True, eps=bn_eps)
|
|
return x
|
|
|
|
def _get_input_output_quantized_filter():
|
|
def _input_output_quantized_filter(
|
|
match: "InternalMatch", # type: ignore[name-defined]
|
|
original_graph: Graph,
|
|
pattern_graph: Graph,
|
|
) -> bool:
|
|
"""
|
|
Make sure that the matched pattern's input is coming from dq node
|
|
and the output is from q node. This is used to filter out the nodes for
|
|
conv-bn pattern.
|
|
We need to replace qat's conv-bn pattern with just conv-bn nodes.
|
|
QAT's conv-bn pattern has q-dq node inserted after convert step.
|
|
In order to replace QAT pattern, see _get_quantized_qat_conv2d_bn_pattern,
|
|
with a simpler pattern, see _get_folded_quantized_qat_conv2d_bn_pattern,
|
|
we need to port the quantization parameters from q/dq nodes of weight.
|
|
This porting becomes easier if there is only one q/dq node because we dont have to
|
|
reason about about finding the right q/dq node from original graph.
|
|
In order to facilitate that matched pattern and replacement pattern cannot have q for
|
|
input activation and dq for output of the fusion. Thus those nodes are removed from
|
|
pattern to be matched, however we still want to make sure that input activation of
|
|
the pattern is actually quantized and output is dequantized. Hence this filter.
|
|
"""
|
|
input_dq_node = None
|
|
output_q_node = None
|
|
for pattern_node, original_node in match.nodes_map.items():
|
|
if pattern_node.op == "placeholder":
|
|
if (
|
|
original_node.target
|
|
== torch.ops.quantized_decomposed.dequantize_per_tensor.default
|
|
):
|
|
input_dq_node = original_node
|
|
# output node is not a separate node in the list of nodes seen in the matçh
|
|
# it is a node in the node.users list of the last node.
|
|
if (
|
|
len(pattern_node.users) == 1
|
|
and list(pattern_node.users.keys())[0].op == "output"
|
|
):
|
|
output_node = list(original_node.users.keys())[0]
|
|
if (
|
|
output_node.target
|
|
== torch.ops.quantized_decomposed.quantize_per_tensor.default
|
|
):
|
|
output_q_node = original_node
|
|
return (input_dq_node is not None) and (output_q_node is not None)
|
|
|
|
return _input_output_quantized_filter
|
|
|
|
|
|
def _get_quantized_qat_conv2d_bn_pattern(
|
|
is_per_channel: bool,
|
|
has_relu: bool,
|
|
has_bias: bool,
|
|
relu_is_inplace: bool,
|
|
) -> Callable:
|
|
"""
|
|
Return the quantized version of QAT conv + BN pattern.
|
|
This is based on `nniqat.ConvBn2d._forward_approximate`,
|
|
used in QAT convert. We first match this pattern and replace
|
|
it with the normal [conv - bn] pattern, then fold the BN
|
|
weights into conv.
|
|
"""
|
|
# TODO: allow setting eps
|
|
bn_eps = 1e-5
|
|
weight_quant_min = -127
|
|
weight_quant_max = 127
|
|
per_channel_axis = 0
|
|
|
|
def _quantized_qat_conv2d_bn_pattern(
|
|
x: torch.Tensor,
|
|
conv_weight: torch.Tensor,
|
|
bn_weight: torch.Tensor,
|
|
bn_bias: torch.Tensor,
|
|
bn_running_mean: torch.Tensor,
|
|
bn_running_var: torch.Tensor,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
running_std = torch.sqrt(bn_running_var + bn_eps)
|
|
scale_factor = bn_weight / running_std
|
|
weight_shape = [1] * len(conv_weight.shape)
|
|
weight_shape[0] = -1
|
|
bias_shape = [1] * len(conv_weight.shape)
|
|
bias_shape[1] = -1
|
|
scaled_weight = conv_weight * scale_factor.reshape(weight_shape)
|
|
if is_per_channel:
|
|
scaled_weight = torch.ops.quantized_decomposed.quantize_per_channel(
|
|
scaled_weight, kwargs['weight_scale'], kwargs['weight_zero_point'], per_channel_axis,
|
|
weight_quant_min, weight_quant_max, torch.int8,
|
|
)
|
|
scaled_weight = torch.ops.quantized_decomposed.dequantize_per_channel(
|
|
scaled_weight, kwargs['weight_scale'], kwargs['weight_zero_point'], per_channel_axis,
|
|
weight_quant_min, weight_quant_max, torch.int8,
|
|
)
|
|
else:
|
|
scaled_weight = torch.ops.quantized_decomposed.quantize_per_tensor(
|
|
scaled_weight, 1.0, 0, weight_quant_min, weight_quant_max, torch.int8,
|
|
)
|
|
scaled_weight = torch.ops.quantized_decomposed.dequantize_per_tensor(
|
|
scaled_weight, 1.0, 0, weight_quant_min, weight_quant_max, torch.int8,
|
|
)
|
|
if has_bias:
|
|
zero_bias = torch.zeros_like(kwargs["conv_bias"], dtype=x.dtype)
|
|
x = F.conv2d(x, scaled_weight, zero_bias)
|
|
else:
|
|
x = F.conv2d(x, scaled_weight, None)
|
|
x = x / scale_factor.reshape(bias_shape)
|
|
if has_bias:
|
|
x = x + kwargs["conv_bias"].reshape(bias_shape)
|
|
x = F.batch_norm(x, bn_running_mean, bn_running_var, bn_weight, bn_bias, training=True, eps=bn_eps)
|
|
if has_relu:
|
|
if relu_is_inplace:
|
|
x = F.relu_(x)
|
|
else:
|
|
x = F.relu(x)
|
|
return x
|
|
return _quantized_qat_conv2d_bn_pattern
|
|
|
|
def _get_folded_quantized_qat_conv2d_bn_pattern(
|
|
is_per_channel: bool,
|
|
has_relu: bool,
|
|
has_bias: bool,
|
|
relu_is_inplace: bool,
|
|
) -> Callable:
|
|
"""
|
|
Quantized QAT conv - bn pattern with bn weights being folded into conv.
|
|
"""
|
|
# TODO: allow setting eps
|
|
bn_eps = 1e-5
|
|
weight_quant_min = -127
|
|
weight_quant_max = 127
|
|
per_channel_axis = 0
|
|
|
|
def _folded_quantized_qat_conv2d_bn_pattern(
|
|
x: torch.Tensor,
|
|
conv_weight: torch.Tensor,
|
|
bn_weight: torch.Tensor,
|
|
bn_bias: torch.Tensor,
|
|
bn_running_mean: torch.Tensor,
|
|
bn_running_var: torch.Tensor,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
if is_per_channel:
|
|
conv_weight = torch.ops.quantized_decomposed.quantize_per_channel(
|
|
conv_weight, kwargs['weight_scale'], kwargs['weight_zero_point'], per_channel_axis,
|
|
weight_quant_min, weight_quant_max, torch.int8,
|
|
)
|
|
conv_weight = torch.ops.quantized_decomposed.dequantize_per_channel(
|
|
conv_weight, kwargs['weight_scale'], kwargs['weight_zero_point'], per_channel_axis,
|
|
weight_quant_min, weight_quant_max, torch.int8,
|
|
)
|
|
else:
|
|
conv_weight = torch.ops.quantized_decomposed.quantize_per_tensor(
|
|
conv_weight, 1.0, 0, weight_quant_min, weight_quant_max, torch.int8,
|
|
)
|
|
conv_weight = torch.ops.quantized_decomposed.dequantize_per_tensor(
|
|
conv_weight, 1.0, 0, weight_quant_min, weight_quant_max, torch.int8,
|
|
)
|
|
if has_bias:
|
|
x = F.conv2d(x, conv_weight, kwargs["conv_bias"])
|
|
else:
|
|
x = F.conv2d(x, conv_weight, None)
|
|
x = F.batch_norm(x, bn_running_mean, bn_running_var, bn_weight, bn_bias, training=True, eps=bn_eps)
|
|
if has_relu:
|
|
if relu_is_inplace:
|
|
x = F.relu_(x)
|
|
else:
|
|
x = F.relu(x)
|
|
return x
|
|
return _folded_quantized_qat_conv2d_bn_pattern
|
|
|
|
def _has_conv_bias_filter(
|
|
match: "InternalMatch", # type: ignore[name-defined]
|
|
original_graph: Graph,
|
|
pattern_graph: Graph,
|
|
) -> bool:
|
|
"""
|
|
Match filter for the subgraph rewriter that returns True if the conv node in
|
|
the original graph has bias.
|
|
"""
|
|
for n in match.nodes_map.values():
|
|
if n.target == torch.ops.aten.convolution.default:
|
|
return n.args[2] is not None
|
|
raise ValueError("Could not find conv node in matched conv + bn pattern")
|
|
|
|
def _no_conv_bias_filter(
|
|
match: "InternalMatch", # type: ignore[name-defined]
|
|
original_graph: Graph,
|
|
pattern_graph: Graph,
|
|
) -> bool:
|
|
"""
|
|
Match filter for the subgraph rewriter that returns True if the conv node in
|
|
the original graph does NOT have bias.
|
|
"""
|
|
return not _has_conv_bias_filter(match, original_graph, pattern_graph)
|
|
|
|
def _get_fused_convbn_q_dq_nodes(nodes: List[Node]) -> Tuple[Node, Node]:
|
|
"""
|
|
This util just identifies the q/dq nodes in the list of nodes.
|
|
If there are more than one d nodes or more than one dq nodes, it will assert.
|
|
"""
|
|
q_node, dq_node = None, None
|
|
for n in nodes:
|
|
if n.op != "call_function":
|
|
continue
|
|
if n.target in [
|
|
torch.ops.quantized_decomposed.quantize_per_tensor.default,
|
|
torch.ops.quantized_decomposed.quantize_per_tensor.tensor,
|
|
torch.ops.quantized_decomposed.quantize_per_channel.default,
|
|
]:
|
|
assert q_node is None
|
|
q_node = n
|
|
elif n.target in [
|
|
torch.ops.quantized_decomposed.dequantize_per_tensor.default,
|
|
torch.ops.quantized_decomposed.dequantize_per_tensor.tensor,
|
|
torch.ops.quantized_decomposed.dequantize_per_channel.default,
|
|
]:
|
|
assert dq_node is None
|
|
dq_node = n
|
|
assert q_node is not None
|
|
assert dq_node is not None
|
|
return (q_node, dq_node)
|
|
|
|
def _get_conv_bn_getitem_nodes(nodes: List[Node]) -> Tuple[Node, Node, Node]:
|
|
"""
|
|
Helper function to extract the conv, bn, and getitem nodes from the list.
|
|
This asserts that the list contains exactly one of each of the above nodes.
|
|
|
|
Return a 3-tuple of (conv node, bn node, getitem node).
|
|
"""
|
|
conv_node, bn_node, getitem_node = None, None, None
|
|
for n in nodes:
|
|
if n.op != "call_function":
|
|
continue
|
|
if n.target == torch.ops.aten.convolution.default:
|
|
assert conv_node is None
|
|
conv_node = n
|
|
elif n.target == torch.ops.aten._native_batch_norm_legit.default:
|
|
assert bn_node is None
|
|
bn_node = n
|
|
elif n.target == operator.getitem:
|
|
assert getitem_node is None
|
|
getitem_node = n
|
|
assert conv_node is not None
|
|
assert bn_node is not None
|
|
assert getitem_node is not None
|
|
return (conv_node, bn_node, getitem_node)
|
|
|
|
def _filter_nodes_map(nodes_map: Dict[Node, Node]) -> Dict[Node, Node]:
|
|
"""
|
|
Return a filtered `nodes_map` returned from the subgraph rewriter.
|
|
The filtered `nodes_map` will contain only nodes that are actually
|
|
matched in the pattern, excluding None or placeholder nodes.
|
|
"""
|
|
new_nodes_map: Dict[Node, Node] = {}
|
|
for pattern_node, graph_node in nodes_map.items():
|
|
# bias can be None
|
|
if graph_node is None:
|
|
continue
|
|
# skip pattern placeholder nodes
|
|
if pattern_node.op == "placeholder":
|
|
continue
|
|
new_nodes_map[pattern_node] = graph_node
|
|
return new_nodes_map
|
|
|
|
def _copy_over_literal_conv_args(original_node: Node, new_node: Node):
|
|
"""
|
|
Copy over literal args in conv, such as stride and padding, from the matched node
|
|
in the original graph to its replacement in the new graph.
|
|
|
|
This is needed due to the following limitation in the subgraph rewriter when used
|
|
with dynamo export: literal (non-tensor) args are not supported in the match and
|
|
replacement patterns. This is because dynamo export automatically inlines these
|
|
literal args, making them dead placeholder nodes. In the future, we should check
|
|
if dynamo export can optionally disable this inlining, or if subgraph rewriter
|
|
can do the copying for us. See https://github.com/pytorch/pytorch/issues/100419.
|
|
|
|
Note: Unlike other tensor args like conv weights and biases, literal args are
|
|
preserved in the original nodes after replacement, so we can access them here.
|
|
"""
|
|
assert original_node.target == torch.ops.aten.convolution.default
|
|
assert new_node.target == torch.ops.aten.convolution.default
|
|
# x, weight, bias, [stride, padding, dilation, transposed, output_padding, groups]
|
|
new_node.args = new_node.args[:3] + original_node.args[3:]
|
|
|
|
def _update_conv_input_qspec_map_after_replacement(original_node: Node, replacement_node: Node):
|
|
"""
|
|
Update the `input_qspec_map` in the annotation after subgraph rewriting.
|
|
|
|
The original annotation referred to the nodes in the original graph,
|
|
so the keys in the `input_qspec_map` will need to be updated to reflect
|
|
the corresponding nodes in the replacement graph.
|
|
"""
|
|
assert original_node.target == torch.ops.aten.convolution.default
|
|
assert replacement_node.target == torch.ops.aten.convolution.default
|
|
if "quantization_annotation" not in original_node.meta:
|
|
return
|
|
original_input_qspec_map = original_node.meta["quantization_annotation"].input_qspec_map
|
|
input_qspec_map = {}
|
|
# get the list of configs, it should be ordered as input, weight, bias
|
|
# note: this is really hacky, we need a better solution, hopefully
|
|
# in subgraph_rewriter, issue tracking the problem: https://github.com/pytorch/pytorch/issues/101820
|
|
all_configs = list(original_input_qspec_map.items())
|
|
# input activation
|
|
input_qspec_map[replacement_node.args[0]] = all_configs[0][1]
|
|
# weight
|
|
input_qspec_map[replacement_node.args[1]] = all_configs[1][1]
|
|
# bias
|
|
if len(replacement_node.args) > 2 and len(all_configs) > 2:
|
|
input_qspec_map[replacement_node.args[2]] = all_configs[2][1]
|
|
replacement_node.meta["quantization_annotation"].input_qspec_map = input_qspec_map
|
|
|
|
def _update_special_qspecs_after_replacement(
|
|
node: Node,
|
|
original_to_replacement_node: Dict[Node, Node],
|
|
):
|
|
"""
|
|
Update the `SharedQuantizationSpec`s and `DerivedQuantizationSpec`s
|
|
used in `node`'s quantization annotation after subgraph rewriting.
|
|
|
|
The original annotation referred to the nodes in the original graph,
|
|
so the nodes used in these special quantization specs will need to
|
|
be updated to the corresponding nodes in the replacement graph.
|
|
"""
|
|
def _get_new_edge_or_node(edge_or_node: EdgeOrNode):
|
|
if isinstance(edge_or_node, Node):
|
|
_node = edge_or_node
|
|
return original_to_replacement_node.get(_node, _node)
|
|
elif isinstance(edge_or_node, tuple) and len(edge_or_node) == 2 and all(isinstance(x, Node) for x in edge_or_node):
|
|
src, dest = edge_or_node
|
|
return (
|
|
original_to_replacement_node.get(src, src),
|
|
original_to_replacement_node.get(dest, dest),
|
|
)
|
|
else:
|
|
raise ValueError("unexpected type for edge_or_node: ", type(edge_or_node))
|
|
|
|
def _get_new_qspec(qspec: QuantizationSpecBase):
|
|
if isinstance(qspec, SharedQuantizationSpec):
|
|
new_edge_or_node = _get_new_edge_or_node(qspec.edge_or_node)
|
|
return SharedQuantizationSpec(new_edge_or_node)
|
|
elif isinstance(qspec, DerivedQuantizationSpec):
|
|
new_derived_from = [_get_new_edge_or_node(x) for x in qspec.derived_from]
|
|
return dataclasses.replace(qspec, derived_from=new_derived_from)
|
|
else:
|
|
return qspec
|
|
|
|
if "quantization_annotation" not in node.meta:
|
|
return
|
|
annotation = node.meta["quantization_annotation"]
|
|
for input_node, qspec in annotation.input_qspec_map.items():
|
|
annotation.input_qspec_map[input_node] = _get_new_qspec(qspec)
|
|
annotation.output_qspec = _get_new_qspec(annotation.output_qspec)
|
|
|
|
def _fuse_conv_bn_qat(m: GraphModule) -> GraphModule:
|
|
"""
|
|
Given a graph of decomposed aten ops, replace the (conv + bn) pattern with
|
|
the fused QAT subgraph equivalent. The input graph should already be annotated.
|
|
The annotations in the original nodes will be preserved in the corresponding
|
|
nodes in the new subgraph.
|
|
|
|
Note: This also handles the (conv + bn + relu) pattern.
|
|
"""
|
|
m.graph.eliminate_dead_code()
|
|
m.recompile()
|
|
example_inputs = _conv2d_bn_pattern_example_inputs
|
|
match_pattern = get_aten_graph_module(_conv2d_bn_pattern, example_inputs)
|
|
|
|
# Step (1): Replace patterns with conv bias
|
|
#
|
|
# Here we do replacement separately for cases with and without conv bias, since
|
|
# the replacement patterns for these two cases are substantially different.
|
|
# TODO: use the public replace_pattern API once it also returns replacement nodes
|
|
|
|
replacement_pattern_with_conv_bias = get_aten_graph_module(
|
|
_qat_conv2d_bn_pattern,
|
|
example_inputs,
|
|
)
|
|
replacements_with_conv_bias = replace_pattern_with_filters(
|
|
m,
|
|
match_pattern,
|
|
replacement_pattern_with_conv_bias,
|
|
match_filters=[_has_conv_bias_filter],
|
|
ignore_literals=True,
|
|
)
|
|
m.recompile()
|
|
|
|
# Step (2): Replace patterns without conv bias
|
|
|
|
replacement_pattern_no_conv_bias = get_aten_graph_module(
|
|
_qat_conv2d_bn_pattern_no_conv_bias,
|
|
example_inputs,
|
|
)
|
|
replacements_no_conv_bias = replace_pattern_with_filters(
|
|
m,
|
|
match_pattern,
|
|
replacement_pattern_no_conv_bias,
|
|
match_filters=[_no_conv_bias_filter],
|
|
ignore_literals=True,
|
|
)
|
|
m.recompile()
|
|
|
|
# Step (3): Post processing
|
|
#
|
|
# Due to limited functionality in the subgraph rewriter, here we manually
|
|
# update the replacement graph as follows:
|
|
#
|
|
# (a) Copy over metadata from original subgraph. This ensures the stack traces
|
|
# and annotations are preserved in the new subgraph
|
|
#
|
|
# (b) Copy over literal args for conv from the original subgraph
|
|
# TODO: do this for literal args for batchnorm as well
|
|
#
|
|
# (c) Update all references of the old nodes in the original subgraph to refer
|
|
# to the corresponding nodes in the new subgraph in the annotations
|
|
#
|
|
# In the future, we should try to push as much of this functionality into the
|
|
# subgraph rewriter as possible, so we don't have to manually copy anything over.
|
|
# For more detail, see https://github.com/pytorch/pytorch/issues/100419.
|
|
|
|
original_to_replacement_node = {}
|
|
for r in replacements_with_conv_bias + replacements_no_conv_bias:
|
|
(replacement_conv_node, replacement_bn_node, replacement_getitem_node) =\
|
|
_get_conv_bn_getitem_nodes(r.replacements)
|
|
|
|
# Step (3a): Copy over metadata for all three nodes in [conv - bn - getitem]
|
|
for original_node in _filter_nodes_map(r.nodes_map).values():
|
|
if original_node.target == torch.ops.aten.convolution.default:
|
|
replacement_conv_node.meta = original_node.meta
|
|
original_to_replacement_node[original_node] = replacement_conv_node
|
|
# Step (3b): Copy over conv literal args
|
|
_copy_over_literal_conv_args(original_node, replacement_conv_node)
|
|
# Step (3c): Update old references in the conv node's input_qspec_map
|
|
_update_conv_input_qspec_map_after_replacement(original_node, replacement_conv_node)
|
|
if original_node.target == torch.ops.aten._native_batch_norm_legit.default:
|
|
replacement_bn_node.meta = original_node.meta
|
|
original_to_replacement_node[original_node] = replacement_bn_node
|
|
if original_node.target == operator.getitem:
|
|
replacement_getitem_node.meta = original_node.meta
|
|
original_to_replacement_node[original_node] = replacement_getitem_node
|
|
|
|
# Step (3c): Update old references in the special qspecs for all nodes in the graph
|
|
for n in m.graph.nodes:
|
|
_update_special_qspecs_after_replacement(n, original_to_replacement_node)
|
|
|
|
return m
|
|
|
|
def _duplicate_dequantize_node(m: GraphModule):
|
|
"""
|
|
Helper function to duplicate all dequantize nodes in the graph if the
|
|
node has more than one user. For example:
|
|
|
|
Before:
|
|
quantize -> dequantize -> a
|
|
\\--> b
|
|
\\--> c
|
|
|
|
After:
|
|
quantize -> dequantize_1 -> a
|
|
\\--> dequantize_2 -> b
|
|
\\--> dequantize_3 -> c
|
|
|
|
This is useful for subgraph rewriting. E.g. if we wish to match the
|
|
pattern [dequantize - a] above, subgraph matching would fail because
|
|
the dequantize node has users outside the matched portion of the graph.
|
|
Instead, we match [dequantize_1 - a], which is safe.
|
|
"""
|
|
dq_op = torch.ops.quantized_decomposed.dequantize_per_tensor
|
|
for n in m.graph.nodes:
|
|
if n.op != "call_function" or n.target != dq_op or len(n.users) == 1:
|
|
continue
|
|
for user in list(n.users):
|
|
with m.graph.inserting_before(n):
|
|
new_node = m.graph.create_node("call_function", dq_op, n.args, n.kwargs)
|
|
user.replace_input_with(n, new_node)
|
|
m.graph.erase_node(n)
|
|
m.recompile()
|
|
|
|
def _remove_extra_dequantize(m: GraphModule):
|
|
"""
|
|
Removes duplicate dequant nodes in the graph, for an operator that has
|
|
multiple dequant nodes as a user, replace them with a single dequant node
|
|
that can be shared across all the uses. This should be seen as the "reverse"
|
|
of `_duplicate_dequantize_node`.
|
|
"""
|
|
dq_op = torch.ops.quantized_decomposed.dequantize_per_tensor
|
|
for n in m.graph.nodes:
|
|
dq_users = [user for user in n.users if user.op == "call_function" and user.target == dq_op]
|
|
if len(dq_users) > 1:
|
|
with m.graph.inserting_after(dq_users[0]):
|
|
new_node = m.graph.create_node("call_function", dq_op, dq_users[0].args, {})
|
|
for dq_user in dq_users:
|
|
dq_user.replace_all_uses_with(new_node)
|
|
m.graph.erase_node(dq_user)
|
|
m.recompile()
|
|
|
|
def _fold_conv_bn_qat(m: GraphModule) -> GraphModule:
|
|
"""
|
|
Replace the quantized (conv + bn) pattern with conv with bn weights folded into the weights of conv.
|
|
"""
|
|
m.graph.eliminate_dead_code()
|
|
m.recompile()
|
|
_duplicate_dequantize_node(m)
|
|
|
|
# Step (1): Replace QAT pattern with simple [conv - bn] pattern
|
|
replacements = []
|
|
replacement_options = itertools.product(
|
|
[True, False], # is_per_channel
|
|
[True, False], # has_relu
|
|
[True, False], # has_bias
|
|
[True, False], # relu_is_inplace
|
|
)
|
|
for is_per_channel, has_relu, has_bias, relu_is_inplace in replacement_options:
|
|
# For the cases without relu, `relu_is_inplace` is irrelevant, so here we arbitrarily
|
|
# filter out one of the values for this flag to avoid having duplicate patterns
|
|
if not has_relu and relu_is_inplace:
|
|
continue
|
|
example_inputs = _quantized_conv2d_bn_pattern_example_inputs
|
|
kwargs = _get_quantized_conv2d_bn_pattern_example_inputs_kwargs(is_per_channel, has_bias)
|
|
match_pattern = _get_quantized_qat_conv2d_bn_pattern(
|
|
is_per_channel, has_relu, has_bias, relu_is_inplace,
|
|
)
|
|
match_pattern = get_aten_graph_module(match_pattern, example_inputs, **kwargs)
|
|
replacement_pattern = _get_folded_quantized_qat_conv2d_bn_pattern(
|
|
is_per_channel, has_relu, has_bias, relu_is_inplace,
|
|
)
|
|
replacement_pattern = get_aten_graph_module(replacement_pattern, example_inputs, **kwargs)
|
|
replacements.extend(
|
|
replace_pattern_with_filters(
|
|
m,
|
|
match_pattern,
|
|
replacement_pattern,
|
|
match_filters=[_get_input_output_quantized_filter()],
|
|
ignore_literals=True,
|
|
)
|
|
)
|
|
m.recompile()
|
|
_remove_extra_dequantize(m)
|
|
|
|
# Step (2): Fold BN weights into conv
|
|
for r in replacements:
|
|
(conv_node, bn_node, _) = _get_conv_bn_getitem_nodes(r.replacements)
|
|
|
|
# get conv weight and bias
|
|
conv_weight_dq = conv_node.args[1]
|
|
assert isinstance(conv_weight_dq, Node)
|
|
assert conv_weight_dq.target in (
|
|
torch.ops.quantized_decomposed.dequantize_per_tensor.tensor,
|
|
torch.ops.quantized_decomposed.dequantize_per_tensor.default,
|
|
torch.ops.quantized_decomposed.dequantize_per_channel.default,
|
|
)
|
|
conv_weight_q = conv_weight_dq.args[0]
|
|
assert isinstance(conv_weight_q, Node)
|
|
assert conv_weight_q.target in (
|
|
torch.ops.quantized_decomposed.quantize_per_tensor.default,
|
|
torch.ops.quantized_decomposed.quantize_per_tensor.tensor,
|
|
torch.ops.quantized_decomposed.quantize_per_channel.default,
|
|
)
|
|
conv_weight = conv_weight_q.args[0]
|
|
assert isinstance(conv_weight, Node)
|
|
assert conv_weight.op == "get_attr"
|
|
conv_bias = conv_node.args[2]
|
|
assert conv_bias is None or isinstance(conv_bias, Node)
|
|
|
|
(weight_q_node, weight_dq_node) = _get_fused_convbn_q_dq_nodes(r.replacements)
|
|
original_weight_q_node = None
|
|
original_weight_dq_node = None
|
|
for pattern_node, original_node in r.nodes_map.items():
|
|
if pattern_node.op == 'placeholder':
|
|
continue
|
|
if (
|
|
original_node.target
|
|
== torch.ops.quantized_decomposed.quantize_per_tensor.default
|
|
):
|
|
assert original_weight_q_node is None
|
|
original_weight_q_node = original_node
|
|
weight_q_node.args = (
|
|
weight_q_node.args[:1] + original_weight_q_node.args[1:]
|
|
)
|
|
if (
|
|
original_node.target
|
|
== torch.ops.quantized_decomposed.dequantize_per_tensor.default
|
|
):
|
|
assert original_weight_dq_node is None
|
|
original_weight_dq_node = original_node
|
|
weight_dq_node.args = (
|
|
weight_dq_node.args[:1] + original_weight_dq_node.args[1:]
|
|
)
|
|
|
|
# fold bn weights into conv
|
|
fold_bn_weights_into_conv_node(conv_node, conv_weight, conv_bias, bn_node, m)
|
|
|
|
# Copy over literal args for conv
|
|
for original_node in _filter_nodes_map(r.nodes_map).values():
|
|
if original_node.target == torch.ops.aten.convolution.default:
|
|
_copy_over_literal_conv_args(original_node, conv_node)
|
|
|
|
m.graph.eliminate_dead_code()
|
|
m.recompile()
|
|
return m
|