mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: the rand N like function had required args which were not being used. As such modified the method signature to give default values so when scripting does not provide these arguments which are not even being used, no error is thrown. Additionally modified the const checker for handling prim::Constant as well Pull Request resolved: https://github.com/pytorch/pytorch/pull/32830 Reviewed By: hl475 Differential Revision: D19731715 Pulled By: houseroad fbshipit-source-id: a3cacb3977eecb88b122e0ceb654fdbf1c8286c1
539 lines
20 KiB
Python
539 lines
20 KiB
Python
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import torch
|
|
from torch._C import ListType
|
|
import warnings
|
|
from sys import maxsize as maxsize
|
|
|
|
import torch.onnx
|
|
# This import monkey-patches graph manipulation methods on Graph, used for the
|
|
# ONNX symbolics
|
|
import torch.onnx.utils
|
|
|
|
from functools import wraps
|
|
|
|
|
|
# Note [Edit Symbolic Files]
|
|
# EDITING THIS FILE AND SYMBOLIC_OPSET<VERSION> FILES? READ THIS FIRST!
|
|
#
|
|
# - These files is ONLY for ATen operators (e.g., operators that show up in the
|
|
# trace as aten::blah). If you need to special case a primitive operator,
|
|
# look at _run_symbolic_function
|
|
# - Parameter ordering does NOT necessarily match what is in VariableType.cpp;
|
|
# tensors are always first, then non-tensor arguments.
|
|
# - Parameter names must *exactly* match the names in VariableType.cpp, because
|
|
# dispatch is done with keyword arguments.
|
|
# - Looking for inplace ops? They're detected by the trailing underscore, and
|
|
# transparently dispatched to their non inplace versions in
|
|
# 'run_symbolic_function'. See Note [Export inplace]
|
|
#
|
|
# ----------------------------------------------------------------------------------
|
|
# A note on Tensor types
|
|
# ----------------------------------------------------------------------------------
|
|
#
|
|
# In general, we should avoid depending on the type of Tensor Values contained
|
|
# within the trace graph. However, this is sometimes unavoidable (due to ONNX
|
|
# spec requirements, etc). The TensorType object has accessors for these properties
|
|
# that return the property if it is statically known and return nullopt otherwise.
|
|
#
|
|
# In general, we should prefer to rely on the least specific information possible.
|
|
# For example, not relying on tensor properties at all is better than relying
|
|
# on the number of dimensions which is better than relying on
|
|
# concrete shapes. Doing so will make the export symbolics
|
|
# more robust to different graphs.
|
|
|
|
# ---------------------------------------------------------------------------------
|
|
# Helper functions
|
|
# ---------------------------------------------------------------------------------
|
|
|
|
# Save some builtins as locals, because we'll shadown them below
|
|
_sum = sum
|
|
|
|
|
|
def _parse_arg(value, desc):
|
|
if desc == 'none':
|
|
return value
|
|
if desc == 'v' or not _is_value(value):
|
|
return value
|
|
if value.node().mustBeNone():
|
|
return None
|
|
if value.node().kind() == 'onnx::Constant':
|
|
tval = value.node()['value']
|
|
if desc == 'i':
|
|
return int(tval)
|
|
elif desc == 'f':
|
|
return float(tval)
|
|
elif desc == 'b':
|
|
return bool(tval)
|
|
elif desc == 's':
|
|
return str(tval)
|
|
elif desc == 't':
|
|
return tval
|
|
elif desc == 'is':
|
|
return [int(v) for v in tval]
|
|
else:
|
|
raise RuntimeError("ONNX symbolic doesn't know to interpret Constant node")
|
|
elif value.node().kind() == 'prim::ListConstruct':
|
|
if desc == 'is':
|
|
for v in value.node().inputs():
|
|
if v.node().kind() != 'onnx::Constant':
|
|
raise RuntimeError("Failed to export an ONNX attribute '" + v.node().kind() +
|
|
"', since it's not constant, please try to make "
|
|
"things (e.g., kernel size) static if possible")
|
|
return [int(v.node()['value']) for v in value.node().inputs()]
|
|
else:
|
|
raise RuntimeError("ONNX symbolic doesn't know to interpret ListConstruct node")
|
|
|
|
raise RuntimeError("Unexpected node type: {}".format(value.node().kind()))
|
|
|
|
|
|
def _maybe_get_const(value, desc):
|
|
if _is_value(value) and value.node().kind() == 'onnx::Constant':
|
|
return _parse_arg(value, desc)
|
|
return value
|
|
|
|
|
|
def _maybe_get_scalar(value):
|
|
value_t = _maybe_get_const(value, 't')
|
|
if isinstance(value_t, torch.Tensor) and value_t.shape == ():
|
|
return value_t
|
|
return value
|
|
|
|
|
|
def _get_const(value, desc, arg_name):
|
|
if _is_value(value) and value.node().kind() not in ('onnx::Constant', 'prim::Constant'):
|
|
raise RuntimeError("ONNX symbolic expected a constant value of the {} argument, got `{}`".format(arg_name, value))
|
|
return _parse_arg(value, desc)
|
|
|
|
|
|
def _unpack_list(list_value):
|
|
list_node = list_value.node()
|
|
assert list_node.kind() == "prim::ListConstruct"
|
|
return list(list_node.inputs())
|
|
|
|
|
|
# Check if list_value is output from prim::ListConstruct
|
|
# This is usually called before _unpack_list to ensure the list can be unpacked.
|
|
def _is_packed_list(list_value):
|
|
return _is_value(list_value) and list_value.node().kind() == "prim::ListConstruct"
|
|
|
|
|
|
def parse_args(*arg_descriptors):
|
|
def decorator(fn):
|
|
fn._arg_descriptors = arg_descriptors
|
|
|
|
def wrapper(g, *args):
|
|
# some args may be optional, so the length may be smaller
|
|
assert len(arg_descriptors) >= len(args)
|
|
args = [_parse_arg(arg, arg_desc) for arg, arg_desc in zip(args, arg_descriptors)]
|
|
return fn(g, *args)
|
|
# In Python 2 functools.wraps chokes on partially applied functions, so we need this as a workaround
|
|
try:
|
|
wrapper = wraps(fn)(wrapper)
|
|
except Exception:
|
|
pass
|
|
return wrapper
|
|
return decorator
|
|
|
|
|
|
def _scalar(x):
|
|
"""Convert a scalar tensor into a Python value."""
|
|
assert x.numel() == 1
|
|
return x.item()
|
|
|
|
|
|
def _if_scalar_type_as(g, self, tensor):
|
|
"""
|
|
Convert self into the same type of tensor, as necessary.
|
|
|
|
We only support implicit casting for scalars, so we never
|
|
actually need to insert an ONNX cast operator here; just
|
|
fix up the scalar.
|
|
"""
|
|
if isinstance(self, torch._C.Value):
|
|
return self
|
|
|
|
scalar_type = tensor.type().scalarType()
|
|
if scalar_type:
|
|
ty = scalar_type.lower()
|
|
return getattr(self, ty)()
|
|
|
|
return self
|
|
|
|
|
|
def _is_none(x):
|
|
return x.node().mustBeNone()
|
|
|
|
def _is_value(x):
|
|
return isinstance(x, torch._C.Value)
|
|
|
|
|
|
def _is_tensor_list(x):
|
|
return x.type().isSubtypeOf(ListType.ofTensors())
|
|
|
|
|
|
def _unimplemented(op, msg):
|
|
warnings.warn("ONNX export failed on " + op + " because " + msg + " not supported")
|
|
|
|
|
|
def _black_list_in_opset(name):
|
|
def symbolic_fn(*args, **kwargs):
|
|
raise RuntimeError("ONNX export failed on {}, which is not implemented for opset {}. "
|
|
"Try exporting with other opset versions."
|
|
.format(name, _export_onnx_opset_version))
|
|
return symbolic_fn
|
|
|
|
|
|
def _try_get_scalar_type(*args):
|
|
for arg in args:
|
|
try:
|
|
return arg.type().scalarType()
|
|
except RuntimeError:
|
|
pass
|
|
return None
|
|
|
|
|
|
def _slice_helper(g, input, axes, starts, ends, steps=None, dynamic_slice=False):
|
|
if _export_onnx_opset_version <= 9:
|
|
from torch.onnx.symbolic_opset9 import _slice
|
|
return _slice(g, input, axes, starts, ends)
|
|
else:
|
|
from torch.onnx.symbolic_opset10 import _slice
|
|
return _slice(g, input, axes, starts, ends, steps, dynamic_slice)
|
|
|
|
|
|
def _is_fp(value):
|
|
if value:
|
|
type = value.type().scalarType()
|
|
return (type == 'Float') or (type == 'Double') or (type == 'Half')
|
|
return False
|
|
|
|
|
|
def _sort_helper(g, input, dim, decending=True, out=None):
|
|
if out is not None:
|
|
_unimplemented("Sort", "Out parameter is not supported")
|
|
shape_ = g.op("Shape", input)
|
|
dim_size_ = g.op("Gather", shape_, g.op("Constant", value_t=torch.tensor([dim], dtype=torch.int64)))
|
|
if _export_onnx_opset_version <= 10:
|
|
if not decending:
|
|
_unimplemented("Sort", "Ascending is not supported")
|
|
return g.op("TopK", input, dim_size_, axis_i=dim, outputs=2)
|
|
else:
|
|
return g.op("TopK", input, dim_size_, axis_i=dim, largest_i=decending, outputs=2)
|
|
|
|
|
|
def _topk_helper(g, input, k, dim, largest=True, sorted=False, out=None):
|
|
if out is not None:
|
|
_unimplemented("TopK", "Out parameter is not supported")
|
|
if not _is_value(k):
|
|
k = g.op("Constant", value_t=torch.tensor([k], dtype=torch.int64))
|
|
else:
|
|
k = g.op("Reshape", k, g.op("Constant", value_t=torch.tensor([1])))
|
|
if _export_onnx_opset_version <= 10:
|
|
if not largest:
|
|
_unimplemented("TopK", "Ascending is not supported")
|
|
return g.op("TopK", input, k, axis_i=dim, outputs=2)
|
|
else:
|
|
return g.op("TopK", input, k, axis_i=dim, largest_i=largest, sorted_i=sorted, outputs=2)
|
|
|
|
|
|
def _interpolate_warning(interpolate_mode):
|
|
onnx_op = "onnx:Resize" if _export_onnx_opset_version >= 10 else "onnx:Upsample"
|
|
warnings.warn("You are trying to export the model with " + onnx_op + " for ONNX opset version "
|
|
"" + str(_export_onnx_opset_version) + ". "
|
|
"This operator might cause results to not match the expected results by PyTorch.\n"
|
|
"ONNX's Upsample/Resize operator did not match Pytorch's Interpolation until opset 11. "
|
|
"Attributes to determine how to transform the input were added in onnx:Resize in opset 11 "
|
|
"to support Pytorch's behavior (like coordinate_transformation_mode and nearest_mode).\n"
|
|
"We recommend using opset 11 and above for models using this operator. ")
|
|
|
|
def _unsqueeze_helper(g, input, dim):
|
|
from torch.onnx.symbolic_opset9 import unsqueeze
|
|
return unsqueeze(g, input, dim)
|
|
|
|
def _interpolate_size_to_scales(g, input, output_size, dim):
|
|
output_size = _maybe_get_const(output_size, 'is')
|
|
if _is_value(output_size):
|
|
offset = 2
|
|
offsets = g.op("Constant", value_t=torch.ones(offset, dtype=torch.float32))
|
|
dividend = g.op("Cast", output_size, to_i=cast_pytorch_to_onnx["Float"])
|
|
divisor = _slice_helper(g, g.op("Shape", input), axes=[0], ends=[maxsize], starts=[offset])
|
|
divisor = g.op("Cast", divisor, to_i=cast_pytorch_to_onnx["Float"])
|
|
scale_dims = g.op("Div", dividend, divisor)
|
|
scales = g.op("Concat", offsets, scale_dims, axis_i=0)
|
|
else:
|
|
scales_constant = [1. if i < 2 else
|
|
float(output_size[-(dim - i)]) / float(input.type().sizes()[-(dim - i)])
|
|
for i in range(0, dim)]
|
|
scales = g.op("Constant", value_t=torch.tensor(scales_constant, dtype=torch.float32))
|
|
return scales
|
|
|
|
|
|
def _interpolate_get_scales_if_available(g, scales):
|
|
available_scales = _maybe_get_const(scales[0], 'f') != -1 and not _is_none(scales[0])
|
|
|
|
if not available_scales:
|
|
return None
|
|
|
|
scales_list = []
|
|
for scale in scales:
|
|
unsqueezed_scale = _unsqueeze_helper(g, scale, 0)
|
|
# ONNX only supports float for the scales. double -> float.
|
|
unsqueezed_scale = g.op("Cast", unsqueezed_scale,
|
|
to_i=cast_pytorch_to_onnx["Float"])
|
|
scales_list.append(unsqueezed_scale)
|
|
offsets = g.op("Constant", value_t=torch.ones(2, dtype=torch.float32))
|
|
scales = g.op("Concat", offsets, *scales_list, axis_i=0)
|
|
return scales
|
|
|
|
|
|
def _get_interpolate_attributes(g, mode, args):
|
|
if mode == 'nearest':
|
|
align_corners = None
|
|
scales = args[0:]
|
|
else:
|
|
align_corners = args[0]
|
|
scales = args[1:]
|
|
scales = _interpolate_get_scales_if_available(g, scales)
|
|
return scales, align_corners
|
|
|
|
def _interpolate_get_scales(g, scale_factor, dim):
|
|
offsets = g.op("Constant", value_t=torch.ones(2, dtype=torch.float32))
|
|
if isinstance(scale_factor.type(), torch._C.ListType):
|
|
return g.op("Concat", offsets, scale_factor, axis_i=0)
|
|
else:
|
|
scale_factor = _unsqueeze_helper(g, scale_factor, 0)
|
|
scale_factor = g.op("Cast", scale_factor, to_i=cast_pytorch_to_onnx["Float"])
|
|
scales = [scale_factor for i in range(dim - 2)]
|
|
scale_factor = g.op("Concat", offsets, *scales, axis_i=0)
|
|
return scale_factor
|
|
|
|
|
|
def _interpolate_get_scales_and_mode(g, input, size, scale_factor, mode , align_corners):
|
|
mode = _maybe_get_const(mode, 's')
|
|
if 'linear' in mode:
|
|
mode = 'linear'
|
|
if 'cubic' in mode:
|
|
mode = 'cubic'
|
|
_interpolate_warning(mode)
|
|
|
|
align_corners = _maybe_get_const(align_corners, 'b')
|
|
if isinstance(align_corners, bool) and align_corners:
|
|
return _unimplemented("interpolate", "align_corners == True")
|
|
|
|
if not input.type().dim():
|
|
return _unimplemented("interpolate", "missing input shape")
|
|
dim = input.type().dim()
|
|
|
|
if not _is_none(scale_factor):
|
|
scale_factor = _interpolate_get_scales(g, scale_factor, dim)
|
|
elif not _is_none(size):
|
|
if not _is_packed_list(size):
|
|
is_scalar = ((_maybe_get_const(size, 't').dim() == 0))
|
|
if is_scalar:
|
|
size = _unsqueeze_helper(g, size, 0)
|
|
size = [size for i in range(dim - 2)]
|
|
size = g.op("Concat", *size, axis_i=0)
|
|
scale_factor = _interpolate_size_to_scales(g, input, size, dim)
|
|
else:
|
|
return _unimplemented("Both size and scales are None in __interpolate")
|
|
return scale_factor, mode
|
|
|
|
|
|
def _scatter_helper(g, self, dim, index, src):
|
|
if _export_onnx_opset_version <= 10:
|
|
from torch.onnx.symbolic_opset9 import scatter
|
|
else:
|
|
from torch.onnx.symbolic_opset11 import scatter
|
|
return scatter(g, self, dim, index, src)
|
|
|
|
|
|
def _arange_cast_helper(g, end, start=None, step=None, dtype=None):
|
|
def _is_all_integral(scalars):
|
|
for scalar in scalars:
|
|
try:
|
|
if scalar.type().scalarType() != 'Long':
|
|
return False
|
|
except Exception:
|
|
pass
|
|
return True
|
|
|
|
# This logic is based on torch.arange docs. If 'dtype' is provided,
|
|
# infer input types from dtype. If not, then check if any of start, stop,
|
|
# or step are floating point, and infer the type from get_default.
|
|
# Otherwise, the dtype is inferred to be torch.int64.
|
|
if _is_value(dtype) and _is_none(dtype):
|
|
if _is_all_integral([start, end, step]):
|
|
type = scalar_type_to_pytorch_type.index(torch.int64)
|
|
else:
|
|
type = scalar_type_to_pytorch_type.index(torch.get_default_dtype())
|
|
else:
|
|
type = dtype
|
|
|
|
start = g.op("Cast", start, to_i=scalar_type_to_onnx[type]) if start else None
|
|
end = g.op("Cast", end, to_i=scalar_type_to_onnx[type]) if end else None
|
|
step = g.op("Cast", step, to_i=scalar_type_to_onnx[type]) if step else None
|
|
return type, end, start, step
|
|
|
|
|
|
def _size_helper(g, self, dim):
|
|
full_shape = g.op("Shape", self)
|
|
from torch.onnx.symbolic_opset9 import select
|
|
return select(g, full_shape, g.op("Constant", value_t=torch.tensor([0])), dim)
|
|
|
|
|
|
def _index_fill_reshape_helper(g, self, dim, index):
|
|
# 1. reshape index => [1, ..., 1, dim, 1, ..., 1]
|
|
# 2. expand index => [..., dim, ...], same shape as self except for dim.
|
|
# 3. expand value as well.
|
|
# 4. apply onnx::scatter.
|
|
|
|
from torch.onnx.symbolic_opset9 import expand
|
|
if _export_onnx_opset_version <= 10:
|
|
from torch.onnx.symbolic_opset9 import scatter
|
|
else:
|
|
from torch.onnx.symbolic_opset11 import scatter
|
|
|
|
if self.type().dim() is None:
|
|
return _unimplemented("index_fill", "input rank not accesible")
|
|
self_dim = self.type().dim()
|
|
dim_value = _parse_arg(dim, 'i')
|
|
unsqueezed_index = g.op("Unsqueeze", index, axes_i=[i for i in range(self_dim) if i != dim_value])
|
|
expanded_index_shape = scatter(g, g.op("Shape", self), 0,
|
|
g.op("Unsqueeze", dim, axes_i=[0]), g.op("Shape", index))
|
|
expanded_index = expand(g, unsqueezed_index, expanded_index_shape, None)
|
|
return expanded_index_shape, expanded_index
|
|
|
|
|
|
def _avgpool_helper(tuple_fn, padding, kernel_size, stride, divisor_override, name):
|
|
if divisor_override and divisor_override.node().kind() != 'prim::Constant':
|
|
return _unimplemented(name, "divisor_override")
|
|
if not stride:
|
|
stride = kernel_size
|
|
padding = tuple(tuple_fn(padding))
|
|
return padding
|
|
|
|
# ---------------------------------------------------------------------
|
|
# ONNX operator version
|
|
# ---------------------------------------------------------------------
|
|
|
|
# READ ME BEFORE EDITING _default_onnx_opset_version:
|
|
#
|
|
# The variable below controls which ONNX operator set version we are
|
|
# targeting. THIS VARIABLE HAS SEMANTIC EFFECT! Say a breaking
|
|
# change occurred in version 8. As long as this variable < 8, you can
|
|
# export models targeting the old behavior. However, if you bump
|
|
# this variable to 8 or later, the breaking change will take into effect:
|
|
# you MUST adjust any symbolic affected by breaking changes. The ONNX
|
|
# spec publishes a *comprehensive* list of BC-breaking changes for every
|
|
# operator revision at:
|
|
#
|
|
# https://github.com/onnx/onnx/blob/master/docs/Changelog.md
|
|
#
|
|
# Please be sure to go through and check all of our implementations here before
|
|
# increasing this number. This includes symbolic definitions NOT in this
|
|
# file, so grep for "OpName" (with quotes)
|
|
#
|
|
# Besides, opset_version can be specified in the invocation of export()
|
|
# and export_to_pretty_string(), and _export_onnx_opset_version will be set
|
|
# and the symbolic functions should check it to determine the behavior
|
|
# of the exporter.
|
|
|
|
|
|
_default_onnx_opset_version = 9
|
|
_onnx_master_opset = 10
|
|
_onnx_stable_opsets = [7, 8, 9, 10, 11, 12]
|
|
_export_onnx_opset_version = _default_onnx_opset_version
|
|
|
|
|
|
def _set_opset_version(opset_version):
|
|
global _export_onnx_opset_version
|
|
if opset_version == _default_onnx_opset_version:
|
|
_export_onnx_opset_version = opset_version
|
|
return
|
|
if opset_version in _onnx_stable_opsets + [_onnx_master_opset]:
|
|
_export_onnx_opset_version = opset_version
|
|
return
|
|
raise ValueError("Unsupported ONNX opset version: " + str(opset_version))
|
|
|
|
_operator_export_type = None
|
|
def _set_operator_export_type(operator_export_type):
|
|
global _operator_export_type
|
|
_operator_export_type = operator_export_type
|
|
|
|
# Metaprogram symbolics for each ATen native specialized cast operator.
|
|
# For e.g. we specify a function named `_cast_uint8_t` that instantiates an
|
|
# ONNX cast node with `to` attribute 'UINT8'
|
|
#
|
|
# TODO: remove these once we support Type's in the JIT IR and we can once again
|
|
# use the unified toType operator
|
|
cast_pytorch_to_onnx = {
|
|
'Byte': torch.onnx.TensorProtoDataType.UINT8,
|
|
'Char': torch.onnx.TensorProtoDataType.INT8,
|
|
'Double': torch.onnx.TensorProtoDataType.DOUBLE,
|
|
'Float': torch.onnx.TensorProtoDataType.FLOAT,
|
|
'Half': torch.onnx.TensorProtoDataType.FLOAT16,
|
|
'Int': torch.onnx.TensorProtoDataType.INT32,
|
|
'Long': torch.onnx.TensorProtoDataType.INT64,
|
|
'Short': torch.onnx.TensorProtoDataType.INT16,
|
|
'Bool': torch.onnx.TensorProtoDataType.BOOL,
|
|
'ComplexFloat': torch.onnx.TensorProtoDataType.COMPLEX64,
|
|
'ComplexDouble': torch.onnx.TensorProtoDataType.COMPLEX128,
|
|
'Undefined': torch.onnx.TensorProtoDataType.UNDEFINED,
|
|
}
|
|
|
|
scalar_name_to_pytorch = {
|
|
'uint8_t': 'Byte',
|
|
'int8_t': 'Char',
|
|
'double': 'Double',
|
|
'float': 'Float',
|
|
'half': 'Half',
|
|
'int': 'Int',
|
|
'int64_t': 'Long',
|
|
'int16_t': 'Short',
|
|
'bool': 'Bool',
|
|
'complex64': '',
|
|
'complex128': ''
|
|
}
|
|
|
|
|
|
# This indicates each scalar type's corresponding
|
|
# torch type. Related source:
|
|
# https://github.com/pytorch/pytorch/blob/da7468853ae322252270bbb58032668bd21b7457/c10/core/ScalarType.h
|
|
scalar_type_to_pytorch_type = [
|
|
torch.uint8, # 0
|
|
torch.int8, # 1
|
|
torch.short, # 2
|
|
torch.int, # 3
|
|
torch.int64, # 4
|
|
torch.half, # 5
|
|
torch.float, # 6
|
|
torch.double, # 7
|
|
torch.complex64, # 9
|
|
torch.complex128, # 10
|
|
torch.bool, # 11
|
|
]
|
|
|
|
|
|
def _cast_func_template(to_i, g, input, non_blocking):
|
|
return g.op("Cast", input, to_i=to_i)
|
|
|
|
|
|
scalar_type_to_onnx = [
|
|
cast_pytorch_to_onnx["Byte"],
|
|
cast_pytorch_to_onnx["Char"],
|
|
cast_pytorch_to_onnx["Short"],
|
|
cast_pytorch_to_onnx["Int"],
|
|
cast_pytorch_to_onnx["Long"],
|
|
cast_pytorch_to_onnx["Half"],
|
|
cast_pytorch_to_onnx["Float"],
|
|
cast_pytorch_to_onnx["Double"],
|
|
cast_pytorch_to_onnx["Undefined"],
|
|
cast_pytorch_to_onnx["ComplexFloat"],
|
|
cast_pytorch_to_onnx["ComplexDouble"],
|
|
cast_pytorch_to_onnx["Bool"],
|
|
]
|
|
# Global set to store the list of quantized operators in the network.
|
|
# This is currently only used in the conversion of quantized ops from PT -> C2 via ONNX.
|
|
_quantized_ops = set()
|