mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Introduce `is_hop_single_tensor_return` field to the `Node` class in serialization so that during deserialization when there is a single return, we know whether it is a tuple of a single element or a single element. Test Plan: ``` buck2 run @mode/dev-nosan sigmoid/inference/test:e2e_test_cpu -- -r E2ETestCPUCond buck2 run @mode/dev-nosan sigmoid/inference/test:test_passes -- -r test_const_folding2 ``` Differential Revision: D66991624 Pull Request resolved: https://github.com/pytorch/pytorch/pull/143227 Approved by: https://github.com/zhxchen17
408 lines
11 KiB
Python
408 lines
11 KiB
Python
# NOTE: This is a placeholder for iterating on export serialization schema design.
|
|
# Anything is subject to change and no guarantee is provided at this point.
|
|
|
|
from dataclasses import dataclass, field
|
|
from enum import IntEnum
|
|
from typing import Annotated, Dict, List, Optional
|
|
|
|
from torch._export.serde.union import _Union
|
|
|
|
# NOTE: Please update this value if any modifications are made to the schema
|
|
SCHEMA_VERSION = (8, 4)
|
|
TREESPEC_VERSION = 1
|
|
|
|
|
|
# NOTE: If you updated the schema, please run `scripts/export/update_schema.py`
|
|
# to update the auto generated files.
|
|
class ScalarType(IntEnum):
|
|
UNKNOWN = 0
|
|
BYTE = 1
|
|
CHAR = 2
|
|
SHORT = 3
|
|
INT = 4
|
|
LONG = 5
|
|
HALF = 6
|
|
FLOAT = 7
|
|
DOUBLE = 8
|
|
COMPLEXHALF = 9
|
|
COMPLEXFLOAT = 10
|
|
COMPLEXDOUBLE = 11
|
|
BOOL = 12
|
|
BFLOAT16 = 13
|
|
UINT16 = 28
|
|
FLOAT8E4M3FN = 29
|
|
FLOAT8E5M2 = 30
|
|
|
|
|
|
class Layout(IntEnum):
|
|
Unknown = 0
|
|
SparseCoo = 1
|
|
SparseCsr = 2
|
|
SparseCsc = 3
|
|
SparseBsr = 4
|
|
SparseBsc = 5
|
|
_mkldnn = 6
|
|
Strided = 7
|
|
|
|
|
|
class MemoryFormat(IntEnum):
|
|
Unknown = 0
|
|
ContiguousFormat = 1
|
|
ChannelsLast = 2
|
|
ChannelsLast3d = 3
|
|
PreserveFormat = 4
|
|
|
|
|
|
@dataclass
|
|
class Device:
|
|
type: Annotated[str, 10]
|
|
index: Annotated[Optional[int], 20] = None
|
|
|
|
|
|
@dataclass(repr=False)
|
|
class SymExprHint(_Union):
|
|
as_int: Annotated[int, 10]
|
|
as_bool: Annotated[bool, 20]
|
|
as_float: Annotated[float, 30]
|
|
|
|
|
|
# This is for storing the symbolic expressions behind symints/symfloats/symbools
|
|
# For example, we can get something like
|
|
# SymExpr(expr_str="s0 + s1", hint=SymExprHint(as_int=4)
|
|
# if we also have the hint that s0 and s1 are both 2.
|
|
@dataclass
|
|
class SymExpr:
|
|
expr_str: Annotated[str, 10]
|
|
hint: Annotated[Optional[SymExprHint], 20] = None
|
|
|
|
|
|
@dataclass(repr=False)
|
|
class SymInt(_Union):
|
|
as_expr: Annotated[SymExpr, 10]
|
|
as_int: Annotated[int, 20]
|
|
|
|
@dataclass(repr=False)
|
|
class SymFloat(_Union):
|
|
as_expr: Annotated[SymExpr, 10]
|
|
as_float: Annotated[float, 20]
|
|
|
|
|
|
@dataclass(repr=False)
|
|
class SymBool(_Union):
|
|
as_expr: Annotated[SymExpr, 10]
|
|
as_bool: Annotated[bool, 20]
|
|
|
|
|
|
@dataclass
|
|
class TensorMeta:
|
|
dtype: Annotated[ScalarType, 10]
|
|
sizes: Annotated[List[SymInt], 20]
|
|
requires_grad: Annotated[bool, 30]
|
|
device: Annotated[Device, 40]
|
|
strides: Annotated[List[SymInt], 50]
|
|
storage_offset: Annotated[SymInt, 60]
|
|
layout: Annotated[Layout, 70]
|
|
|
|
|
|
# In most cases we will use the "as_name" field to store arguments which are
|
|
# SymInts.
|
|
# The "as_int" field is used in the case where we have a list containing a mix
|
|
# of SymInt and ints (ex. [1, s0, ...]). We will serialize this type of list to
|
|
# be List[SymIntArgument] and map the SymInts to the "as_name" field, and ints
|
|
# to the "as_int" field.
|
|
@dataclass(repr=False)
|
|
class SymIntArgument(_Union):
|
|
as_name: Annotated[str, 10]
|
|
as_int: Annotated[int, 20]
|
|
|
|
# In most cases we will use the "as_name" field to store arguments which are
|
|
# SymFloats.
|
|
# The "as_float" field is used in the case where we have a list containing a mix
|
|
# of SymFloat and float (ex. [1.0, s0, ...]). We will serialize this type of list to
|
|
# be List[SymFloatArgument] and map the SymFloats to the "as_name" field, and ints
|
|
# to the "as_float" field.
|
|
@dataclass(repr=False)
|
|
class SymFloatArgument(_Union):
|
|
as_name: Annotated[str, 10]
|
|
as_float: Annotated[float, 20]
|
|
|
|
# In most cases we will use the "as_name" field to store arguments which are
|
|
# SymBools.
|
|
# The "as_bool" field is used in the case where we have a list containing a mix
|
|
# of SymBool and bools (ex. [True, i0, ...]). We will serialize this type of list to
|
|
# be List[SymboolArgument] and map the SymBools to the "as_name" field, and bools
|
|
# to the "as_bool" field.
|
|
@dataclass(repr=False)
|
|
class SymBoolArgument(_Union):
|
|
as_name: Annotated[str, 10]
|
|
as_bool: Annotated[bool, 20]
|
|
|
|
|
|
@dataclass
|
|
class TensorArgument:
|
|
name: Annotated[str, 10]
|
|
|
|
|
|
@dataclass
|
|
class TokenArgument:
|
|
name: Annotated[str, 10]
|
|
|
|
|
|
# This is use for storing the contents of a list which contain optional tensors
|
|
# (Tensor?[], ex. [Tensor, None, ...]), where the list will be serialized to the
|
|
# type List[OptionalTensorArgument], with tensor values seiralized to the
|
|
# "as_tensor" field, and None values serialized to the "as_none" field.
|
|
@dataclass(repr=False)
|
|
class OptionalTensorArgument(_Union):
|
|
as_tensor: Annotated[TensorArgument, 20]
|
|
as_none: Annotated[bool, 10]
|
|
|
|
|
|
@dataclass
|
|
class GraphArgument:
|
|
name: Annotated[str, 10]
|
|
graph: Annotated['Graph', 20]
|
|
|
|
|
|
@dataclass
|
|
class CustomObjArgument:
|
|
name: Annotated[str, 10]
|
|
class_fqn: Annotated[str, 20]
|
|
|
|
|
|
# This is actually a union type
|
|
@dataclass(repr=False)
|
|
class Argument(_Union):
|
|
as_none: Annotated[bool, 10]
|
|
as_tensor: Annotated[TensorArgument, 20]
|
|
as_tensors: Annotated[List[TensorArgument], 30]
|
|
as_int: Annotated[int, 50]
|
|
as_ints: Annotated[List[int], 70]
|
|
as_float: Annotated[float, 80]
|
|
as_floats: Annotated[List[float], 90]
|
|
as_string: Annotated[str, 100]
|
|
as_strings: Annotated[List[str], 101]
|
|
as_sym_int: Annotated[SymIntArgument, 110]
|
|
as_sym_ints: Annotated[List[SymIntArgument], 120]
|
|
as_scalar_type: Annotated[ScalarType, 130]
|
|
as_memory_format: Annotated[MemoryFormat, 140]
|
|
as_layout: Annotated[Layout, 150]
|
|
as_device: Annotated[Device, 160]
|
|
as_bool: Annotated[bool, 170]
|
|
as_bools: Annotated[List[bool], 180]
|
|
as_sym_bool: Annotated[SymBoolArgument, 182]
|
|
as_sym_bools: Annotated[List[SymBoolArgument], 184]
|
|
as_graph: Annotated[GraphArgument, 200]
|
|
as_optional_tensors: Annotated[List[OptionalTensorArgument], 190]
|
|
as_custom_obj: Annotated[CustomObjArgument, 210]
|
|
as_operator: Annotated[str, 220]
|
|
as_sym_float: Annotated[SymFloatArgument, 230]
|
|
as_sym_floats: Annotated[List[SymFloatArgument], 240]
|
|
|
|
@dataclass
|
|
class NamedArgument:
|
|
# Argument name from the operator schema
|
|
name: Annotated[str, 10]
|
|
arg: Annotated[Argument, 20]
|
|
|
|
|
|
@dataclass
|
|
class Node:
|
|
target: Annotated[str, 10]
|
|
inputs: Annotated[List[NamedArgument], 20]
|
|
outputs: Annotated[List[Argument], 30]
|
|
metadata: Annotated[Dict[str, str], 40]
|
|
is_hop_single_tensor_return: Annotated[Optional[bool], 50] = None
|
|
|
|
|
|
@dataclass
|
|
class Graph:
|
|
inputs: Annotated[List[Argument], 10]
|
|
outputs: Annotated[List[Argument], 20]
|
|
nodes: Annotated[List[Node], 30]
|
|
tensor_values: Annotated[Dict[str, TensorMeta], 40]
|
|
sym_int_values: Annotated[Dict[str, SymInt], 50]
|
|
sym_bool_values: Annotated[Dict[str, SymBool], 60]
|
|
# This is for deserializing the submodule graphs from higher order ops
|
|
# (ex. cond, map) where single tensor returns will just return a single
|
|
# tensor, rather than following export schema and returning a singleton
|
|
# list.
|
|
is_single_tensor_return: Annotated[bool, 70] = False
|
|
custom_obj_values: Annotated[Dict[str, CustomObjArgument], 80] = field(default_factory=dict)
|
|
sym_float_values: Annotated[Dict[str, SymFloat], 90] = field(default_factory=dict)
|
|
|
|
@dataclass
|
|
class UserInputSpec:
|
|
# Actually, only tensors and SymInts are allowed here
|
|
arg: Annotated[Argument, 10]
|
|
|
|
|
|
@dataclass(repr=False)
|
|
class ConstantValue(_Union):
|
|
as_none: Annotated[bool, 10]
|
|
as_int: Annotated[int, 20]
|
|
as_float: Annotated[float, 30]
|
|
as_string: Annotated[str, 40]
|
|
as_bool: Annotated[bool, 50]
|
|
|
|
|
|
@dataclass
|
|
class InputToConstantInputSpec:
|
|
name: Annotated[str, 10]
|
|
value: Annotated[ConstantValue, 20]
|
|
|
|
|
|
@dataclass
|
|
class InputToParameterSpec:
|
|
arg: Annotated[TensorArgument, 10]
|
|
parameter_name: Annotated[str, 20]
|
|
|
|
|
|
@dataclass
|
|
class InputToBufferSpec:
|
|
arg: Annotated[TensorArgument, 10]
|
|
buffer_name: Annotated[str, 20]
|
|
persistent: Annotated[bool, 30]
|
|
|
|
|
|
|
|
@dataclass
|
|
class InputToTensorConstantSpec:
|
|
arg: Annotated[TensorArgument, 10]
|
|
tensor_constant_name: Annotated[str, 20]
|
|
|
|
|
|
@dataclass
|
|
class InputToCustomObjSpec:
|
|
arg: Annotated[CustomObjArgument, 10]
|
|
custom_obj_name: Annotated[str, 20]
|
|
|
|
|
|
@dataclass
|
|
class InputTokenSpec:
|
|
arg: Annotated[TokenArgument, 10]
|
|
|
|
|
|
@dataclass(repr=False)
|
|
class InputSpec(_Union):
|
|
user_input: Annotated[UserInputSpec, 10]
|
|
parameter: Annotated[InputToParameterSpec, 20]
|
|
buffer: Annotated[InputToBufferSpec, 30]
|
|
tensor_constant: Annotated[InputToTensorConstantSpec, 40]
|
|
custom_obj: Annotated[InputToCustomObjSpec, 50]
|
|
token: Annotated[InputTokenSpec, 70]
|
|
constant_input: Annotated[InputToConstantInputSpec, 60]
|
|
|
|
|
|
@dataclass
|
|
class UserOutputSpec:
|
|
arg: Annotated[Argument, 10]
|
|
|
|
|
|
@dataclass
|
|
class LossOutputSpec:
|
|
arg: Annotated[TensorArgument, 10]
|
|
|
|
|
|
@dataclass
|
|
class BufferMutationSpec:
|
|
arg: Annotated[TensorArgument, 10]
|
|
buffer_name: Annotated[str, 20]
|
|
|
|
|
|
@dataclass
|
|
class GradientToParameterSpec:
|
|
arg: Annotated[TensorArgument, 10]
|
|
parameter_name: Annotated[str, 20]
|
|
|
|
|
|
@dataclass
|
|
class GradientToUserInputSpec:
|
|
arg: Annotated[TensorArgument, 10]
|
|
user_input_name: Annotated[str, 20]
|
|
|
|
|
|
@dataclass
|
|
class UserInputMutationSpec:
|
|
arg: Annotated[TensorArgument, 10]
|
|
user_input_name: Annotated[str, 20]
|
|
|
|
|
|
@dataclass
|
|
class OutputTokenSpec:
|
|
arg: Annotated[TokenArgument, 10]
|
|
|
|
|
|
@dataclass(repr=False)
|
|
class OutputSpec(_Union):
|
|
user_output: Annotated[UserOutputSpec, 10]
|
|
loss_output: Annotated[LossOutputSpec, 20]
|
|
buffer_mutation: Annotated[BufferMutationSpec, 30]
|
|
gradient_to_parameter: Annotated[GradientToParameterSpec, 40]
|
|
gradient_to_user_input: Annotated[GradientToUserInputSpec, 50]
|
|
user_input_mutation: Annotated[UserInputMutationSpec, 60]
|
|
token: Annotated[OutputTokenSpec, 70]
|
|
|
|
|
|
@dataclass
|
|
class GraphSignature:
|
|
input_specs: Annotated[List[InputSpec], 10]
|
|
output_specs: Annotated[List[OutputSpec], 20]
|
|
|
|
|
|
@dataclass
|
|
class RangeConstraint:
|
|
min_val: Annotated[Optional[int], 10]
|
|
max_val: Annotated[Optional[int], 20]
|
|
|
|
|
|
@dataclass
|
|
class ModuleCallSignature:
|
|
inputs: Annotated[List[Argument], 10]
|
|
outputs: Annotated[List[Argument], 20]
|
|
|
|
# These are serialized by calling pytree.treespec_loads
|
|
# And deserialized by calling pytree.treespec_dumps
|
|
in_spec: Annotated[str, 30]
|
|
out_spec: Annotated[str, 40]
|
|
|
|
# This field is used to prettify the graph placeholders
|
|
# after we ser/der and retrace
|
|
forward_arg_names: Annotated[Optional[List[str]], 50] = None
|
|
|
|
|
|
@dataclass
|
|
class ModuleCallEntry:
|
|
fqn: Annotated[str, 10]
|
|
signature: Annotated[Optional[ModuleCallSignature], 30] = None
|
|
|
|
|
|
@dataclass
|
|
class GraphModule:
|
|
graph: Annotated[Graph, 10]
|
|
signature: Annotated[GraphSignature, 50]
|
|
# This is used for unflattening, by tracking the calling structure of all of
|
|
# the modules in order to unflatten the modules back to the eager calling
|
|
# conventions.
|
|
module_call_graph: Annotated[List[ModuleCallEntry], 60]
|
|
metadata: Annotated[Dict[str, str], 40] = field(default_factory=dict)
|
|
|
|
|
|
# Invariant: Every time a change is made to the schema, one of the versions
|
|
# should be upadted.
|
|
@dataclass
|
|
class SchemaVersion:
|
|
major: Annotated[int, 10] # Major version number is bumped every time a breaking change is made.
|
|
minor: Annotated[int, 20] # Minor version number is bumped when a compatible change is made.
|
|
|
|
|
|
@dataclass
|
|
class ExportedProgram:
|
|
graph_module: Annotated[GraphModule, 10]
|
|
# Key is the opset namespace (ex. aten), and value is the version number
|
|
opset_version: Annotated[Dict[str, int], 20]
|
|
range_constraints: Annotated[Dict[str, RangeConstraint], 30]
|
|
schema_version: Annotated[SchemaVersion, 60]
|
|
verifiers: Annotated[List[str], 70] = field(default_factory=list)
|
|
torch_version: Annotated[str, 80] = "<=2.4"
|