mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Fixes #ISSUE_NUMBER Pull Request resolved: https://github.com/pytorch/pytorch/pull/100776 Approved by: https://github.com/ezyang
582 lines
19 KiB
Python
582 lines
19 KiB
Python
import functools
|
|
import itertools
|
|
import logging
|
|
import os
|
|
import re
|
|
from dataclasses import dataclass, field
|
|
from importlib import __import__
|
|
from typing import Dict, Optional, Set, Union
|
|
from weakref import WeakSet
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
DEFAULT_LOG_LEVEL = logging.WARN
|
|
DEFAULT_FORMATTER = logging.Formatter(
|
|
"[%(asctime)s] %(name)s: [%(levelname)s] %(message)s"
|
|
)
|
|
LOG_ENV_VAR = "TORCH_LOGS"
|
|
|
|
|
|
@dataclass
|
|
class LogRegistry:
|
|
# shorthand name to log qualified name
|
|
# Note: this only contains loggers registered
|
|
# from register_log
|
|
# e.g. "dynamo" -> "torch._dynamo"
|
|
log_alias_to_log_qname: Dict[str, str] = field(default_factory=dict)
|
|
|
|
# artifact logger qualified names,
|
|
# this is populated lazily, as calls to getArtifactLogger
|
|
# currently formatted as <module>.__<artifact_name>
|
|
# e.g. "torch._dynamo.convert_frame.__guards"
|
|
artifact_log_qnames: Set[str] = field(default_factory=set)
|
|
|
|
# child logs of registered logs if specified via open
|
|
# registration by the user (ie placing "torch._dynamo.output_graph" in the env var)
|
|
# these need to be tracked so their levels can be reset properly
|
|
# e.g. "torch._dynamo.output_graph"
|
|
child_log_qnames: Set[str] = field(default_factory=set)
|
|
|
|
# artifact names, populated by register_artifact
|
|
# e.g. "guards"
|
|
artifact_names: Set[str] = field(default_factory=set)
|
|
|
|
# artifacts which are not displayed unless explicitly named in the
|
|
# settings. Ex. output_code is NOT displayed even if the inductor
|
|
# log level is set to DEBUG. It must be explicitly named in the settings
|
|
off_by_default_artifact_names: Set[str] = field(default_factory=set)
|
|
|
|
def is_artifact(self, name):
|
|
return name in self.artifact_names
|
|
|
|
def is_log(self, alias):
|
|
return alias in self.log_alias_to_log_qname
|
|
|
|
# register a log with an alias
|
|
def register_log(self, alias, log_qname):
|
|
self.log_alias_to_log_qname[alias] = log_qname
|
|
|
|
# register an artifact name
|
|
def register_artifact_name(self, name, off_by_default):
|
|
self.artifact_names.add(name)
|
|
|
|
# if off by default, don't enable it
|
|
# when log_name's log_level is set to DEBUG
|
|
if off_by_default:
|
|
self.off_by_default_artifact_names.add(name)
|
|
|
|
# register the qualified name of an artifact log
|
|
# this is needed to know which logs need to be reset
|
|
# whenever the log_state is changed
|
|
def register_artifact_log(self, artifact_log_qname):
|
|
self.artifact_log_qnames.add(artifact_log_qname)
|
|
|
|
def register_child_log(self, log_qname):
|
|
self.child_log_qnames.add(log_qname)
|
|
|
|
def get_log_qnames(self):
|
|
return set(self.log_alias_to_log_qname.values())
|
|
|
|
def get_artifact_log_qnames(self):
|
|
return set(self.artifact_log_qnames)
|
|
|
|
def get_child_log_qnames(self):
|
|
return set(self.child_log_qnames)
|
|
|
|
def is_off_by_default(self, artifact_qname):
|
|
return artifact_qname in self.off_by_default_artifact_names
|
|
|
|
|
|
@dataclass
|
|
class LogState:
|
|
# qualified log names -> currently set log level
|
|
log_qname_to_level: Dict[str, str] = field(default_factory=dict)
|
|
|
|
# the set of currently enabled artifacts
|
|
artifact_names: Set[str] = field(default_factory=set)
|
|
|
|
def enable_artifact(self, artifact_name):
|
|
self.artifact_names.add(artifact_name)
|
|
|
|
def is_artifact_enabled(self, name):
|
|
return name in self.artifact_names
|
|
|
|
def enable_log(self, log_qname, log_level):
|
|
self.log_qname_to_level[log_qname] = log_level
|
|
|
|
def get_log_level_pairs(self):
|
|
return self.log_qname_to_level.items()
|
|
|
|
def clear(self):
|
|
self.log_qname_to_level.clear()
|
|
self.artifact_names.clear()
|
|
|
|
|
|
log_registry = LogRegistry()
|
|
log_state = LogState()
|
|
|
|
|
|
def set_logs(
|
|
*,
|
|
all: Optional[int] = None,
|
|
dynamo: Optional[int] = None,
|
|
aot: Optional[int] = None,
|
|
dynamic: int = None,
|
|
inductor: int = None,
|
|
bytecode: bool = False,
|
|
aot_graphs: bool = False,
|
|
aot_joint_graph: bool = False,
|
|
ddp_graphs: bool = False,
|
|
graph: bool = False,
|
|
graph_code: bool = False,
|
|
guards: bool = False,
|
|
recompiles: bool = False,
|
|
output_code: bool = False,
|
|
schedule: bool = False,
|
|
modules: Optional[Dict[str, Union[int, bool]]] = None,
|
|
):
|
|
"""
|
|
Sets the log level for individual components and toggles individual log
|
|
artifact types.
|
|
|
|
.. warning:: This feature is a prototype and may have compatibility
|
|
breaking changes in the future.
|
|
|
|
.. note:: The ``TORCH_LOGS`` environment variable has complete precedence
|
|
over this function, so if it was set, this function does nothing.
|
|
|
|
A component is a set of related features in PyTorch. All of the log
|
|
messages emitted from a given component have their own log levels. If the
|
|
log level of a particular message has priority greater than or equal to its
|
|
component's log level setting, it is emitted. Otherwise, it is supressed.
|
|
This allows you to, for instance, silence large groups of log messages that
|
|
are not relevant to you and increase verbosity of logs for components that
|
|
are relevant. The expected log level values, ordered from highest to lowest
|
|
priority, are:
|
|
|
|
* ``logging.CRITICAL``
|
|
* ``logging.ERROR``
|
|
* ``logging.WARNING``
|
|
* ``logging.INFO``
|
|
* ``logging.DEBUG``
|
|
* ``logging.NOTSET``
|
|
|
|
See documentation for the Python ``logging`` module for more information on
|
|
log levels: `<https://docs.python.org/3/library/logging.html#logging-levels>`_
|
|
|
|
An artifact is a particular type of log message. Each artifact is assigned
|
|
to a parent component. A component can emit many different kinds of
|
|
artifacts. In general, an artifact is emitted if either its corresponding
|
|
setting in the argument list below is turned on or if its parent component
|
|
is set to a log level less than or equal to the log level of the artifact.
|
|
|
|
Keyword args:
|
|
all (:class:`Optional[int]`):
|
|
The default log level for all components. Default: ``logging.WARN``
|
|
|
|
dynamo (:class:`Optional[int]`):
|
|
The log level for the TorchDynamo component. Default: ``logging.WARN``
|
|
|
|
aot (:class:`Optional[int]`):
|
|
The log level for the AOTAutograd component. Default: ``logging.WARN``
|
|
|
|
inductor (:class:`Optional[int]`):
|
|
The log level for the TorchInductor component. Default: ``logging.WARN``
|
|
|
|
dynamic (:class:`Optional[int]`):
|
|
The log level for dynamic shapes. Default: ``logging.WARN``
|
|
|
|
bytecode (:class:`bool`):
|
|
Whether to emit the original and generated bytecode from TorchDynamo.
|
|
Default: ``False``
|
|
|
|
aot_graphs (:class:`bool`):
|
|
Whether to emit the graphs generated by AOTAutograd. Default: ``False``
|
|
|
|
aot_joint_graph (:class:`bool`):
|
|
Whether to emit the joint forward-backward graph generated by AOTAutograd. Default: ``False``
|
|
|
|
ddp_graphs (:class:`bool`):
|
|
Whether to emit graphs generated by DDPOptimizer. Default: ``False``
|
|
|
|
graph (:class:`bool`):
|
|
Whether to emit the graph captured by TorchDynamo in tabular format.
|
|
Default: ``False``
|
|
|
|
graph_code (:class:`bool`):
|
|
Whether to emit the python source of the graph captured by TorchDynamo.
|
|
Default: ``False``
|
|
|
|
guards (:class:`bool`):
|
|
Whether to emit the guards generated by TorchDynamo for each compiled
|
|
function. Default: ``False``
|
|
|
|
recompiles (:class:`bool`):
|
|
Whether to emit a guard failure reason and message every time
|
|
TorchDynamo recompiles a function. Default: ``False``
|
|
|
|
output_code (:class:`bool`):
|
|
Whether to emit the TorchInductor output code. Default: ``False``
|
|
|
|
schedule (:class:`bool`):
|
|
Whether to emit the TorchInductor schedule. Default: ``False``
|
|
|
|
modules (dict):
|
|
This argument provides an alternate way to specify the above log
|
|
component and artifact settings, in the format of a keyword args
|
|
dictionary given as a single argument. There are two cases
|
|
where this is useful (1) if a new log component or artifact has
|
|
been registered but a keyword argument for it has not been added
|
|
to this function and (2) if the log level for an unregistered module
|
|
needs to be set. This can be done by providing the fully-qualified module
|
|
name as the key, with the log level as the value. Default: ``None``
|
|
|
|
|
|
Example::
|
|
|
|
>>> # xdoctest: +SKIP
|
|
>>> import logging
|
|
|
|
# The following changes the "dynamo" component to emit DEBUG-level
|
|
# logs, and to emit "graph_code" artifacts.
|
|
|
|
>>> torch._logging.set_logs(dynamo=logging.DEBUG, graph_code=True)
|
|
|
|
# The following enables the logs for a different module
|
|
|
|
>>> torch._logging.set_logs(modules={"unregistered.module.name": logging.DEBUG})
|
|
"""
|
|
# ignore if env var is set
|
|
if LOG_ENV_VAR in os.environ:
|
|
log.warning(
|
|
"Using TORCH_LOGS environment variable for log settings, ignoring call to set_logs"
|
|
)
|
|
return
|
|
|
|
log_state.clear()
|
|
|
|
modules = modules or {}
|
|
|
|
def _set_logs(**kwargs):
|
|
default_level = kwargs.pop("all", None)
|
|
if default_level:
|
|
if default_level not in logging._levelToName:
|
|
raise ValueError(
|
|
f"Unrecognized log level for kwarg all: {default_level}, valid level values "
|
|
f"are: {','.join([str(k) for k in logging._levelToName.keys()])}"
|
|
)
|
|
|
|
# add any missing aliases to kwargs
|
|
for alias in log_registry.log_alias_to_log_qname.keys():
|
|
if alias not in kwargs:
|
|
kwargs[alias] = default_level
|
|
else:
|
|
default_level = DEFAULT_LOG_LEVEL
|
|
|
|
for alias, val in itertools.chain(kwargs.items(), modules.items()): # type: ignore[union-attr]
|
|
if val is None:
|
|
val = default_level
|
|
|
|
if log_registry.is_artifact(alias):
|
|
if val:
|
|
log_state.enable_artifact(alias)
|
|
elif log_registry.is_log(alias):
|
|
if val not in logging._levelToName:
|
|
raise ValueError(
|
|
f"Unrecognized log level for log {alias}: {val}, valid level values "
|
|
f"are: {','.join([str(k) for k in logging._levelToName.keys()])}"
|
|
)
|
|
|
|
log_state.enable_log(log_registry.log_alias_to_log_qname[alias], val)
|
|
elif alias == "all":
|
|
continue
|
|
else:
|
|
raise ValueError(
|
|
f"Unrecognized log or artifact name passed to set_logs: {alias}"
|
|
)
|
|
|
|
_init_logs()
|
|
|
|
_set_logs(
|
|
all=all,
|
|
dynamo=dynamo,
|
|
aot=aot,
|
|
inductor=inductor,
|
|
dynamic=dynamic,
|
|
bytecode=bytecode,
|
|
aot_graphs=aot_graphs,
|
|
aot_joint_graph=aot_joint_graph,
|
|
ddp_graphs=ddp_graphs,
|
|
graph=graph,
|
|
graph_code=graph_code,
|
|
guards=guards,
|
|
recompiles=recompiles,
|
|
output_code=output_code,
|
|
schedule=schedule,
|
|
)
|
|
|
|
|
|
def get_loggers():
|
|
"""
|
|
Returns: a list of all registered loggers
|
|
"""
|
|
return [logging.getLogger(qname) for qname in log_registry.get_log_qnames()]
|
|
|
|
|
|
def register_log(setting_name, log_name):
|
|
"""
|
|
Enables a log to be controlled by the env var and user API with the setting_name
|
|
Args:
|
|
setting_name: the shorthand name used in the env var and user API
|
|
log_name: the log name that the setting_name is associated with
|
|
"""
|
|
log_registry.register_log(setting_name, log_name)
|
|
|
|
|
|
def register_artifact(setting_name, off_by_default=False):
|
|
"""
|
|
Enables an artifact to be controlled by the env var and user API with name
|
|
Args:
|
|
setting_name: the shorthand name used in the env var and user API
|
|
off_by_default: whether this artifact should be logged when the ancestor loggers
|
|
are enabled at level DEBUG
|
|
"""
|
|
log_registry.register_artifact_name(setting_name, off_by_default)
|
|
|
|
|
|
def getArtifactLogger(module_qname, artifact_name):
|
|
if artifact_name not in log_registry.artifact_names:
|
|
raise ValueError(
|
|
f"Artifact name: {repr(artifact_name)} not registered,"
|
|
f"please call register_artifact({repr(artifact_name)}) in torch._logging.registrations."
|
|
)
|
|
qname = module_qname + f".__{artifact_name}"
|
|
log = logging.getLogger(module_qname + f".__{artifact_name}")
|
|
log.artifact_name = artifact_name # type: ignore[attr-defined]
|
|
log_registry.register_artifact_log(qname)
|
|
configure_artifact_log(log)
|
|
return log
|
|
|
|
|
|
INCR_VERBOSITY_CHAR = "+"
|
|
DECR_VERBOSITY_CHAR = "-"
|
|
VERBOSITY_REGEX = (
|
|
"("
|
|
+ "|".join([re.escape(INCR_VERBOSITY_CHAR), re.escape(DECR_VERBOSITY_CHAR)])
|
|
+ "?)"
|
|
)
|
|
|
|
|
|
def configure_artifact_log(log):
|
|
# If the artifact is off by default, then it should only be logged when explicitly
|
|
# enabled; set propagate to False so that this artifact is not propagated
|
|
# to its ancestor logger
|
|
if log_registry.is_off_by_default(log.artifact_name):
|
|
log.propagate = False
|
|
|
|
# enable artifact logging when explicitly enabled
|
|
if log_state.is_artifact_enabled(log.artifact_name):
|
|
log.setLevel(logging.DEBUG)
|
|
log.propagate = True
|
|
|
|
|
|
# match a comma separated list of loggable names (whitespace allowed after commas)
|
|
def _gen_settings_regex():
|
|
return re.compile(r"((\+|-)?[\w\.]+,\s*)*(\+|-)?[\w\.]+?")
|
|
|
|
|
|
def _validate_settings(settings):
|
|
return re.fullmatch(_gen_settings_regex(), settings) is not None
|
|
|
|
|
|
def _invalid_settings_err_msg(settings):
|
|
entities = "\n " + "\n ".join(
|
|
itertools.chain(
|
|
["all"],
|
|
log_registry.log_alias_to_log_qname.keys(),
|
|
log_registry.artifact_names,
|
|
)
|
|
)
|
|
msg = (
|
|
f"Invalid log settings: {settings}, must be a comma separated list of fully qualified module names, "
|
|
f"registered log names or registered artifact names.\nCurrently registered names: {entities}"
|
|
)
|
|
return msg
|
|
|
|
|
|
@functools.lru_cache()
|
|
def _parse_log_settings(settings):
|
|
if settings == "":
|
|
return dict()
|
|
|
|
if not _validate_settings(settings):
|
|
raise ValueError(_invalid_settings_err_msg(settings))
|
|
|
|
settings = re.sub(r"\s+", "", settings)
|
|
log_names = settings.split(",")
|
|
|
|
def get_name_level_pair(name):
|
|
clean_name = name.replace(INCR_VERBOSITY_CHAR, "")
|
|
clean_name = clean_name.replace(DECR_VERBOSITY_CHAR, "")
|
|
|
|
if name[0] == INCR_VERBOSITY_CHAR:
|
|
level = logging.DEBUG
|
|
elif name[0] == DECR_VERBOSITY_CHAR:
|
|
level = logging.ERROR
|
|
else:
|
|
level = logging.INFO
|
|
|
|
return clean_name, level
|
|
|
|
log_state = LogState()
|
|
|
|
for name in log_names:
|
|
name, level = get_name_level_pair(name)
|
|
if name == "all":
|
|
for log_qname in log_registry.get_log_qnames():
|
|
log_state.enable_log(log_qname, level)
|
|
|
|
for name in log_names:
|
|
name, level = get_name_level_pair(name)
|
|
|
|
if log_registry.is_log(name):
|
|
assert level is not None
|
|
log_qname = log_registry.log_alias_to_log_qname[name]
|
|
log_state.enable_log(log_qname, level)
|
|
elif log_registry.is_artifact(name):
|
|
log_state.enable_artifact(name)
|
|
elif name == "all":
|
|
continue
|
|
elif _is_valid_module(name):
|
|
if not _has_registered_parent(name):
|
|
log_registry.register_log(name, name)
|
|
else:
|
|
log_registry.register_child_log(name)
|
|
log_state.enable_log(name, level)
|
|
else:
|
|
raise ValueError(_invalid_settings_err_msg(settings))
|
|
|
|
return log_state
|
|
|
|
|
|
def _is_valid_module(qname):
|
|
try:
|
|
__import__(qname)
|
|
return True
|
|
except ImportError:
|
|
return False
|
|
|
|
|
|
def _update_log_state_from_env():
|
|
global log_state
|
|
log_setting = os.environ.get(LOG_ENV_VAR, None)
|
|
if log_setting is not None:
|
|
log_state = _parse_log_settings(log_setting)
|
|
|
|
|
|
def _has_registered_parent(log_qname):
|
|
cur_log = logging.getLogger(log_qname)
|
|
|
|
registered_log_qnames = log_registry.get_log_qnames()
|
|
|
|
while cur_log.parent:
|
|
if cur_log.name in registered_log_qnames:
|
|
return True
|
|
cur_log = cur_log.parent
|
|
|
|
return False
|
|
|
|
|
|
def _setup_handlers(create_handler_fn, log):
|
|
debug_handler = _track_handler(create_handler_fn())
|
|
debug_handler.setFormatter(DEFAULT_FORMATTER)
|
|
debug_handler.setLevel(logging.DEBUG)
|
|
log.addHandler(debug_handler)
|
|
|
|
|
|
handlers = WeakSet() # type: ignore[var-annotated]
|
|
|
|
|
|
# mark handlers that we've created
|
|
# so we don't modify user handlers
|
|
def _track_handler(handler):
|
|
handlers.add(handler)
|
|
return handler
|
|
|
|
|
|
def _is_torch_handler(handler):
|
|
return handler in handlers
|
|
|
|
|
|
# clears all torch handlers on specified loggers
|
|
def _clear_handlers(log):
|
|
to_remove = [handler for handler in log.handlers if _is_torch_handler(handler)]
|
|
for handler in to_remove:
|
|
log.removeHandler(handler)
|
|
|
|
|
|
def _reset_logs():
|
|
# reset all registered logs
|
|
for log_qname in log_registry.get_log_qnames():
|
|
log = logging.getLogger(log_qname)
|
|
log.setLevel(logging.WARNING)
|
|
log.propagate = False
|
|
_clear_handlers(log)
|
|
|
|
# reset all artifact and child logs
|
|
for artifact_log_qname in itertools.chain(
|
|
log_registry.get_artifact_log_qnames(), log_registry.get_child_log_qnames()
|
|
):
|
|
log = logging.getLogger(artifact_log_qname)
|
|
log.setLevel(logging.NOTSET)
|
|
log.propagate = True
|
|
|
|
|
|
def _get_log_state():
|
|
return log_state
|
|
|
|
|
|
def _set_log_state(state):
|
|
global log_state
|
|
log_state = state
|
|
|
|
|
|
def _init_logs(log_file_name=None):
|
|
_reset_logs()
|
|
_update_log_state_from_env()
|
|
|
|
for log_qname, level in log_state.get_log_level_pairs():
|
|
log = logging.getLogger(log_qname)
|
|
log.setLevel(level)
|
|
|
|
# setup handlers for all registered loggers
|
|
for log_qname in log_registry.get_log_qnames():
|
|
log = logging.getLogger(log_qname)
|
|
_setup_handlers(
|
|
logging.StreamHandler,
|
|
log,
|
|
)
|
|
|
|
if log_file_name is not None:
|
|
_setup_handlers(
|
|
lambda: logging.FileHandler(log_file_name),
|
|
log,
|
|
)
|
|
|
|
# configure artifact loggers, note: this must happen last
|
|
# since the levels of ancestor loggers are taken into account
|
|
for artifact_log_qname in log_registry.get_artifact_log_qnames():
|
|
log = logging.getLogger(artifact_log_qname)
|
|
configure_artifact_log(log)
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def warning_once(logger_obj, *args, **kwargs):
|
|
"""
|
|
This function is similar to `logger.warning()`, but will emit the warning with the same message only once
|
|
Note: The cache is for the function arguments, so 2 different callers using the same arguments will hit the cache.
|
|
The assumption here is that all warning messages are unique across the code. If they aren't then need to switch to
|
|
another type of cache that includes the caller frame information in the hashing function.
|
|
"""
|
|
logger_obj.warning(*args, **kwargs)
|