mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Things changed in this PR that requires review: test/forward_backward_compatibility/check_forward_backward_compatibility.py Our previous function overload extension names were wrong and has been updated in this PR, hence the compatibility list updated. nvfuser code updates with bug fixes towards failures we encountered in OpInfoTests as well as failures reported by AOTAutograd team. Pull Request resolved: https://github.com/pytorch/pytorch/pull/73627 Reviewed By: Chillee Differential Revision: D34765458 Pulled By: davidberard98 fbshipit-source-id: c81f3d6a1b723fb3a8ba419b7f82227f70440ca7 (cherry picked from commit b6a2c362c37051e44fac31687b2fe272f776551e)
741 lines
26 KiB
C++
741 lines
26 KiB
C++
#include <torch/csrc/jit/codegen/cuda/interface.h>
|
|
|
|
#include <ATen/core/dispatch/OperatorOptions.h>
|
|
#include <c10/util/irange.h>
|
|
#include <torch/csrc/jit/runtime/custom_operator.h>
|
|
#include <torch/csrc/jit/runtime/register_ops_utils.h>
|
|
|
|
// NOLINTNEXTLINE
|
|
C10_DEFINE_bool(
|
|
torch_jit_nvfuser_singleton_fusion,
|
|
false,
|
|
"enable single node fusion for nvfuser");
|
|
|
|
// NOLINTNEXTLINE
|
|
C10_DEFINE_bool(
|
|
torch_jit_nvfuser_horizontal_fusion,
|
|
true,
|
|
"enable horizontal fusion for nvfuser");
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
namespace fuser {
|
|
namespace cuda {
|
|
|
|
static std::atomic<bool> cuda_fusion_guard_mode{true};
|
|
|
|
bool getSingletonFusion() {
|
|
return FLAGS_torch_jit_nvfuser_singleton_fusion;
|
|
}
|
|
|
|
bool setSingletonFusion(bool value) {
|
|
bool old_value = FLAGS_torch_jit_nvfuser_singleton_fusion;
|
|
FLAGS_torch_jit_nvfuser_singleton_fusion = value;
|
|
return old_value;
|
|
}
|
|
|
|
bool getHorizontalFusion() {
|
|
return FLAGS_torch_jit_nvfuser_horizontal_fusion;
|
|
}
|
|
|
|
bool setHorizontalFusion(bool value) {
|
|
bool old_value = FLAGS_torch_jit_nvfuser_horizontal_fusion;
|
|
FLAGS_torch_jit_nvfuser_horizontal_fusion = value;
|
|
return old_value;
|
|
}
|
|
|
|
std::atomic<bool>& getCudaFusionGuardMode() {
|
|
return cuda_fusion_guard_mode;
|
|
}
|
|
|
|
CudaFuserInterface* getFuserInterface() {
|
|
static CudaFuserInterface fuser_interface_;
|
|
return &fuser_interface_;
|
|
}
|
|
|
|
void compileFusionGroup(Node* fusion_node) {
|
|
TORCH_CHECK(
|
|
getFuserInterface()->fn_compile_n != nullptr,
|
|
"Running the CUDA fuser requires a CUDA build.");
|
|
getFuserInterface()->fn_compile_n(fusion_node);
|
|
}
|
|
|
|
void runFusionGroup(const Node* fusion_node, Stack& stack) {
|
|
TORCH_CHECK(
|
|
getFuserInterface()->fn_run_n_s != nullptr,
|
|
"Running the CUDA fuser requires a CUDA build.");
|
|
getFuserInterface()->fn_run_n_s(fusion_node, stack);
|
|
}
|
|
|
|
void fuseGraph(std::shared_ptr<Graph>& graph) {
|
|
TORCH_CHECK(
|
|
getFuserInterface()->fn_fuse_graph != nullptr,
|
|
"Running the CUDA fuser requires a CUDA build.");
|
|
getFuserInterface()->fn_fuse_graph(graph);
|
|
}
|
|
|
|
bool canFuseNode(const Node* node) {
|
|
return getFuserInterface()->fn_can_fuse_n != nullptr &&
|
|
getFuserInterface()->fn_can_fuse_n(node);
|
|
}
|
|
|
|
void InsertProfileNodesForCUDAFuser(ProfilingRecord* pr) {
|
|
if (getFuserInterface()->fn_insert_profile_inodes) {
|
|
getFuserInterface()->fn_insert_profile_inodes(pr);
|
|
}
|
|
}
|
|
|
|
bool profileNode(const Node* node) {
|
|
return getFuserInterface()->fn_profile_n != nullptr &&
|
|
getFuserInterface()->fn_profile_n(node);
|
|
}
|
|
|
|
bool skipNode(const std::string& symbol_str, bool flip) {
|
|
return getFuserInterface()->fn_skip_n != nullptr &&
|
|
getFuserInterface()->fn_skip_n(symbol_str, flip);
|
|
}
|
|
|
|
//! [ Note -- type guard logic in CudaFusionGuard ]
|
|
//!
|
|
//! CudaFusionGuard is used to Guard input tensor to `CudaFusionGroup` so that
|
|
//! we would not feed inputs that violates the graph defined in `GraphCache`.
|
|
//!
|
|
//! see [ Note -- 2 level cache implementation ] for definition of unique
|
|
//! computational graph.
|
|
//! see [ Note -- CudaFusionGuard implementation] for details on how guard works
|
|
//! in profiling executor
|
|
//!
|
|
//! Type guard logic is used to query whether a runtime input `tensor` compiles
|
|
//! with profiled `guard_tensor_type`. `guard_tensor_type` is the observed
|
|
//! tensor type during profiling runs.
|
|
//!
|
|
//! At this moment, we only do single profiling run, so `guard_tensor_type` has
|
|
//! static shape / stride / scalarType. *This might be a little confusing as our
|
|
//! implementation is actually more relaxed.
|
|
//!
|
|
//! Things that we check:
|
|
//! a. identical rank & scalar type
|
|
//! b. stride check:
|
|
//! b.1. identical stride order
|
|
//! b.2. identical contiguity
|
|
//! note that contiguity here is used for tensor collapsing. So
|
|
//! extra attention should be paid to contiguity across size-1
|
|
//! dimensions.
|
|
//! c. size check:
|
|
//! c.1 broadcast check:
|
|
//! making sure that broadcast semantics are identical. So we want to
|
|
//! make sure a given dimension either are both size-1 for `tensor` &
|
|
//! `guard_tensor_type`, or are both non-size-1.
|
|
//! This is due to the fact that we specialize size-1 dimension as
|
|
//! broadcasted dimension while translating PyTorch tensor to Fusion IR.
|
|
//! c.1 size-0 check:
|
|
//! we don't specialize this on codegen, but we do specialize fusion
|
|
//! logic for size-0 on reductoins, hence the check
|
|
//!
|
|
bool complyWith(
|
|
const at::Tensor& tensor,
|
|
const c10::TensorTypePtr& guard_tensor_type) {
|
|
// guard broadcast semantics, contiguity & stride order;
|
|
TORCH_INTERNAL_ASSERT(
|
|
guard_tensor_type && guard_tensor_type->dim().has_value());
|
|
|
|
// check a. if num_dimension check fails or scalar type check fails
|
|
if (*guard_tensor_type->dim() != static_cast<size_t>(tensor.ndimension()) ||
|
|
(guard_tensor_type->scalarType().has_value() &&
|
|
(guard_tensor_type->scalarType().value() != tensor.scalar_type())) ||
|
|
(guard_tensor_type->device().has_value() &&
|
|
(guard_tensor_type->device().value() != tensor.device())) ||
|
|
(guard_tensor_type->requiresGrad().has_value() &&
|
|
guard_tensor_type->requiresGrad().value() != tensor.requires_grad())) {
|
|
return false;
|
|
}
|
|
|
|
// TODO: should we get symbolic_size instead and check for size
|
|
// consistency across tensors as well?
|
|
const auto& sizes = guard_tensor_type->sizes();
|
|
// see [ Note -- stirde_properties in tensor type ]
|
|
const auto& stride_properties = guard_tensor_type->stride_properties();
|
|
|
|
const auto& t_sizes = tensor.sizes();
|
|
const auto& t_strides = tensor.strides();
|
|
int inner_dim = -1;
|
|
for (const auto j : c10::irange(*guard_tensor_type->dim())) {
|
|
// check b. for stride check, we go along dimensions from fastest stride to
|
|
// slowest stride
|
|
int sorted_index = stride_properties[j]->stride_index_
|
|
? static_cast<int>(*stride_properties[j]->stride_index_)
|
|
: -1;
|
|
|
|
// only apply stride check when we have stride_properties
|
|
if (sorted_index != -1) {
|
|
// check b.1. stride order [current dimension has stride larger
|
|
// than its inner dimension(s)], check only applies when both:
|
|
// i. already encountered an inner dimension
|
|
// ii. not at the fastest dimension
|
|
if (j != 0 && inner_dim != -1) {
|
|
// we are not looking at dim-j, but dim-sorted_index, which
|
|
// is the j-th fastest dim;
|
|
// Note: we ignore 0-stride dimension, since eager logic on stride
|
|
// indices is ambiguous
|
|
if (t_strides[sorted_index] != 0 && t_strides[inner_dim] != 0 &&
|
|
t_strides[sorted_index] < t_strides[inner_dim]) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// check b.2. contiguity, we only check when it's marked as
|
|
// contiguous.
|
|
if (stride_properties[j]->contiguous_ &&
|
|
*stride_properties[j]->contiguous_) {
|
|
if (j != 0) {
|
|
// we use contiguity to collapse dimension, if size == 1, it is
|
|
// always collapsible
|
|
// computeStrideProps also default to contiguous when stride == 1
|
|
if (t_sizes[sorted_index] != 1 && t_strides[sorted_index] != 1) {
|
|
TORCH_INTERNAL_ASSERT(
|
|
stride_properties[j - 1]->stride_index_.has_value(),
|
|
"Counknown index is meaningless");
|
|
// TODO: merge this check up
|
|
if (t_strides[sorted_index] !=
|
|
t_strides[inner_dim] * t_sizes[inner_dim]) {
|
|
return false;
|
|
}
|
|
}
|
|
} else {
|
|
// TODO: merge this check up
|
|
if (t_strides[sorted_index] != 1) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// update inner_dim to be current dim. Note that we try to skip update
|
|
// when current `t_size[sorted_index] == 1`, because:
|
|
// 1. stride comparison on a size-1 dimension is meaningless
|
|
// [check b.1]
|
|
// 2. contiguity on a size-1 dimension is misleading. For collapsing,
|
|
// we should actually look at the next non-size-1 dimension
|
|
// [check b.2]
|
|
if (inner_dim == -1 || t_sizes[sorted_index] != 1) {
|
|
inner_dim = sorted_index;
|
|
}
|
|
}
|
|
|
|
// check c.1, we go along semantic ordered dimensions
|
|
// check broadcast / size-1:
|
|
bool guard_bcast = sizes[j].has_value() && sizes[j].value() == 1;
|
|
if (guard_bcast != (t_sizes[j] == 1)) {
|
|
return false;
|
|
}
|
|
|
|
// check c.2, check for size-0
|
|
bool guard_size_0 = sizes[j].has_value() && sizes[j].value() == 0;
|
|
if (guard_size_0 != (t_sizes[j] == 0)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace cuda
|
|
} // namespace fuser
|
|
|
|
namespace {
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
|
|
RegisterOperators size_eq_guard({
|
|
Operator(
|
|
//"prim::CudaFusionSizeEq(int[] size, int[] ref) -> bool",
|
|
"prim::CudaFusionSizeEq(...) -> bool",
|
|
// prim::CudaFusionGuard returns a fresh Boolean type without aliasing.
|
|
// if we would ever return refined tensor, which would change aliasing
|
|
// analysis, we should update aliasdb pass.
|
|
[](const Node* node) -> Operation {
|
|
return [](Stack& stack) {
|
|
at::ArrayRef<IValue> inputs = last(stack, 2);
|
|
drop(stack, 2);
|
|
|
|
if (!fuser::cuda::getCudaFusionGuardMode()) {
|
|
push(stack, IValue(true));
|
|
return;
|
|
}
|
|
|
|
// auto inp = inputs[0].toIntList();
|
|
TORCH_INTERNAL_ASSERT(
|
|
inputs[1].isIntList(), "reference needs to be of int list");
|
|
auto ref = inputs[1].toIntList();
|
|
|
|
auto ret = true;
|
|
if (ref.empty()) {
|
|
ret = inputs[0].isNone();
|
|
} else {
|
|
if (inputs[0].isIntList()) {
|
|
auto inp = inputs[0].toIntList();
|
|
if (inp.size() != ref.size()) {
|
|
push(stack, IValue(false));
|
|
return;
|
|
}
|
|
|
|
for (const auto i : c10::irange(inp.size())) {
|
|
if (((inp[i] == 1) != (ref[i] == 1))) {
|
|
ret = false;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
ret = false;
|
|
}
|
|
}
|
|
|
|
push(stack, IValue(ret));
|
|
return;
|
|
};
|
|
},
|
|
aliasAnalysisFromSchema()),
|
|
});
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
|
|
RegisterOperators reg_fusion({
|
|
Operator(
|
|
prim::CudaFusionGroup,
|
|
[](const Node* node) -> Operation {
|
|
return [node](Stack& stack) {
|
|
fuser::cuda::runFusionGroup(node, stack);
|
|
};
|
|
},
|
|
aliasAnalysisSpecialCase()),
|
|
});
|
|
|
|
RegisterOperators reg_guard({
|
|
Operator(
|
|
"prim::CudaFusionGuard(...) -> bool",
|
|
// prim::CudaFusionGuard returns a fresh Boolean type without aliasing.
|
|
// if we would ever return refined tensor, which would change aliasing
|
|
// analysis, we should update aliasdb pass.
|
|
[](const Node* node) -> Operation {
|
|
return [node](Stack& stack) {
|
|
// TODO: check latency here!!!!
|
|
std::vector<TypePtr> types = node->tys(attr::types);
|
|
const auto num_inputs = types.size();
|
|
at::ArrayRef<IValue> inputs = last(stack, num_inputs);
|
|
drop(stack, num_inputs);
|
|
|
|
if (!fuser::cuda::getCudaFusionGuardMode()) {
|
|
push(stack, IValue(true));
|
|
return;
|
|
}
|
|
|
|
for (const auto i : c10::irange(num_inputs)) {
|
|
const c10::TensorTypePtr& guard_tensor_type =
|
|
types[i]->cast<TensorType>();
|
|
|
|
// TODO: maybe we should just push false and fallback
|
|
TORCH_INTERNAL_ASSERT(inputs[i].isTensor());
|
|
const at::Tensor& tensor = inputs[i].toTensor();
|
|
|
|
if (!fuser::cuda::complyWith(tensor, guard_tensor_type)) {
|
|
push(stack, IValue(false));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// TODO: check type and return the right flag
|
|
// naively return true;
|
|
push(stack, IValue(true));
|
|
return;
|
|
};
|
|
},
|
|
aliasAnalysisFromSchema()),
|
|
});
|
|
|
|
// Infer dynamic axis (-1) in view_sizes given tensor_sizes
|
|
bool inferViewShape(
|
|
c10::List<int64_t> tensor_sizes,
|
|
c10::List<int64_t> view_sizes) {
|
|
int64_t dynamic_index = -1;
|
|
size_t view_size_num_elements = 1;
|
|
for (size_t idx = 0; idx < view_sizes.size(); ++idx) {
|
|
if (view_sizes[idx] == -1) {
|
|
TORCH_INTERNAL_ASSERT(
|
|
dynamic_index == -1, "Only one dimension can by inferred.")
|
|
dynamic_index = idx;
|
|
} else {
|
|
TORCH_INTERNAL_ASSERT(view_sizes[idx] > 0);
|
|
view_size_num_elements *= view_sizes[idx];
|
|
}
|
|
}
|
|
const size_t kNumElements = std::accumulate(
|
|
tensor_sizes.begin(), tensor_sizes.end(), 1, std::multiplies<>());
|
|
|
|
if (kNumElements % view_size_num_elements != 0) {
|
|
return false;
|
|
}
|
|
|
|
if (dynamic_index != -1) {
|
|
view_sizes[dynamic_index] = kNumElements / view_size_num_elements;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//! [ Note -- type guard logic in CudaFusionViewGuard ]
|
|
//!
|
|
//! CudaFusionViewGuard is used to guard input tensors to a `CudaFusionGroup`
|
|
//! that contains view operations, so that we would not feed inputs that
|
|
//! violate the graph defined in `GraphCache`.
|
|
//!
|
|
//! output = view(self, view-sizes)
|
|
//!
|
|
//! View Guard Inputs:
|
|
//! 1. self tensor_sizes - dynamic size List[Int]
|
|
//! 2. view_sizes - profile_ivalue List[Int]
|
|
//! 3. tensor_constraint - Constant List[Int]
|
|
//! 4. view_sizes_constraint - Constant List[Int]
|
|
//!
|
|
//! Things that we check:
|
|
//! 1. The #dimensions are the same for self tensor and its constraint
|
|
//! 2. The #dimensions are the same for view-sizes and its constraint
|
|
//! 3. Self tensor does not violate its constraint
|
|
//! a. Queue unrestricted sizes
|
|
//! b. Calculate #elements in self tensor
|
|
//! 4. view-sizes does not violate its constraint
|
|
//! a. Pop unrestricted sizes from queue
|
|
//! b. Calculate #elements in view-sizes
|
|
//! 5. The #elements is the same for self tensor and view-sizes
|
|
//!
|
|
//! Constraints:
|
|
//! A restricted axis creates a graph constraint, so its sizes is static.
|
|
//! An unrestricted axis is allowed to have a dynamic size, if it is consistent
|
|
//! between self tensor and view-sizes. It is marked with -1 in the constraint.
|
|
//! Only iterDomains with the Keep transform are dynamic. All other transforms
|
|
//! create a static constraint.
|
|
//!
|
|
bool checkViewGuard(
|
|
c10::List<int64_t> tensor_sizes,
|
|
c10::List<int64_t> view_sizes,
|
|
c10::List<int64_t> tensor_constraint,
|
|
c10::List<int64_t> view_sizes_constraint) {
|
|
// 1: Num Dimensions Check
|
|
if (tensor_constraint.size() != tensor_sizes.size() ||
|
|
view_sizes_constraint.size() != view_sizes.size()) {
|
|
return false;
|
|
}
|
|
|
|
// If axis allows dynamic sizes, then add tensor size to this queue.
|
|
// For dynamic axes in view_sizes, check that it is consistent with
|
|
// the corresponding tensor size.
|
|
std::queue<int64_t> dynamic_axis_queue;
|
|
|
|
// 2. Tensor Static Check
|
|
int64_t tensor_size_product = 1;
|
|
for (const auto idx : c10::irange(tensor_sizes.size())) {
|
|
if (tensor_constraint[idx] == -1) {
|
|
dynamic_axis_queue.push(tensor_sizes[idx]);
|
|
} else if (tensor_constraint[idx] != tensor_sizes[idx]) {
|
|
return false;
|
|
}
|
|
tensor_size_product *= tensor_sizes[idx];
|
|
}
|
|
|
|
// 3. View-Sizes Static Check
|
|
int64_t view_size_product = 1;
|
|
for (const auto idx : c10::irange(view_sizes.size())) {
|
|
auto dynamic_size = (view_sizes_constraint[idx] == -1)
|
|
? dynamic_axis_queue.front()
|
|
: view_sizes_constraint[idx];
|
|
if (dynamic_size != view_sizes[idx]) {
|
|
return false;
|
|
}
|
|
view_size_product *= dynamic_size;
|
|
if (view_sizes_constraint[idx] == -1) {
|
|
dynamic_axis_queue.pop();
|
|
}
|
|
}
|
|
|
|
// 4. Check view invariant
|
|
// The number of elements in the input and output tensors are the same.
|
|
return tensor_size_product == view_size_product;
|
|
}
|
|
|
|
//!
|
|
//! CudaFusionViewGuard Example Graph:
|
|
//!
|
|
//! graph(%self : __torch__.BiasViewRelu,
|
|
//! %inputs.1 : Tensor):
|
|
//! %2 : int = prim::Constant[value=-1]() # dynamic_bvg.py:50:40
|
|
//! %3 : int = prim::Constant[value=1]() # dynamic_bvg.py:50:25
|
|
//! %4 : NoneType = prim::Constant()
|
|
//! %5 : int[] = prim::Constant[value=[2, 3]]()
|
|
//! %6 : int[] = aten::size(%inputs.1) # dynamic_bvg.py:50:25
|
|
//! %7 : int[] = aten::slice(%6, %4, %2, %3) # dynamic_bvg.py:50:25
|
|
//! %view_shape.1 : int[] = aten::add(%7, %5) # dynamic_bvg.py:50:25
|
|
//! %bias : Tensor = prim::GetAttr[name="bias"](%self)
|
|
//! %10 : int[] = aten::size(%bias)
|
|
//! %11 : int[] = prim::BroadcastSizes(%6, %10)
|
|
//! %12 : bool = prim::CudaFusionGuard[types=[...]](%inputs.1, %bias)
|
|
//! %13 : int[] = prim::Constant[value=[-1, -1, -1, 6]]()
|
|
//! %14 : int[] = prim::Constant[value=[-1, -1, -1, 2, 3]]()
|
|
//! %15 : bool = prim::CudaFusionViewGuard(%11, %view_shape.1, %13, %14)
|
|
//! %16 : bool[] = prim::ListConstruct(%15, %12)
|
|
//! %17 : bool = aten::all(%16)
|
|
//! %18 : Tensor = prim::If(%17)
|
|
//! block0():
|
|
//! %19 : Tensor = prim::CudaFusionGroup_0[cache_id=0](%inputs.1, %bias)
|
|
//! -> (%19)
|
|
//! block1():
|
|
//! %20 : Function = prim::Constant[name="fallback_fn", fallback=1]()
|
|
//! %21 : (...) = prim::CallFunction(%20, %inputs.1, %bias, %view_shape.1)
|
|
//! %22 : Float(...) = prim::TupleUnpack(%21)
|
|
//! -> (%22)
|
|
//! return (%18)
|
|
//! with prim::CudaFusionGroup_0 = graph(%0 : Float(...),
|
|
//! %1 : Float(...)):
|
|
//! %2 : int[] = prim::Constant[value=[2, 3, 4, 2, 3]]()
|
|
//! %3 : int = prim::Constant[value=1]() # dynamic_bvg.py:50:25
|
|
//! %o.1 : Float(...) = aten::add(%0, %1, %3) # dynamic_bvg.py:51:16
|
|
//! %5 : Float(...) = prim::view_copy(%o.1, %2)
|
|
//! %6 : Float(...) = aten::relu(%5) # dynamic_bvg.py:53:19
|
|
//! return (%6)
|
|
//!
|
|
RegisterOperators view_guard({
|
|
Operator(
|
|
"prim::CudaFusionViewGuard(...) -> bool",
|
|
// prim::CudaFusionViewGuard returns a fresh Boolean type without
|
|
// aliasing. if we would ever return refined tensor, which would change
|
|
// aliasing analysis, we should update aliasdb pass.
|
|
[](const Node* node) -> Operation {
|
|
return [](Stack& stack) {
|
|
// view_sizes_constraint - Constant List[Int]
|
|
at::ArrayRef<IValue> inputs = last(stack, 4);
|
|
|
|
// tensor_sizes is the runtime size for the self tensor
|
|
// tensor_sizes - dynamic size List[Int]
|
|
TORCH_INTERNAL_ASSERT(
|
|
inputs[0].isIntList(), "tensor_sizes needs to be Int List");
|
|
auto tensor_sizes = inputs[0].toIntList();
|
|
|
|
// profiled_view_sizes is the runtime view size
|
|
// profiled_view_sizes - profile_ivalue List[Int]
|
|
TORCH_INTERNAL_ASSERT(
|
|
inputs[1].isIntList(),
|
|
"profiled_view_sizes needs to be Int list");
|
|
auto profiled_view_sizes = inputs[1].toIntList();
|
|
|
|
// tensor_constraint is a constant List[Int]
|
|
// used to guard tensor_sizes
|
|
TORCH_INTERNAL_ASSERT(
|
|
inputs[2].isIntList(),
|
|
"tensor constraint needs to be Int List");
|
|
auto tensor_constraint = inputs[2].toIntList();
|
|
|
|
// view_sizes_constraint is a constant List[Int]
|
|
// used to guard profiled_view_sizes
|
|
TORCH_INTERNAL_ASSERT(
|
|
inputs[3].isIntList(),
|
|
"view_sizes constraint needs to be Int List");
|
|
auto view_sizes_constraint = inputs[3].toIntList();
|
|
|
|
// Drop after gather all input arguments
|
|
// If an argument is moved, it is destroyed when dropped from stack
|
|
drop(stack, 4);
|
|
|
|
auto status = inferViewShape(tensor_sizes, profiled_view_sizes);
|
|
if (!status) {
|
|
push(stack, IValue(false));
|
|
return;
|
|
}
|
|
|
|
if (!fuser::cuda::getCudaFusionGuardMode()) {
|
|
push(stack, IValue(true));
|
|
return;
|
|
}
|
|
|
|
auto guard_status = checkViewGuard(
|
|
tensor_sizes,
|
|
profiled_view_sizes,
|
|
tensor_constraint,
|
|
view_sizes_constraint);
|
|
push(stack, IValue(guard_status));
|
|
return;
|
|
};
|
|
},
|
|
aliasAnalysisFromSchema()),
|
|
});
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
|
|
RegisterOperators reg_add_optional({
|
|
Operator(
|
|
"prim::add_optional(Tensor(a) input, Tensor? bias) -> Tensor(a)",
|
|
[](const Node* node) -> Operation {
|
|
return [](Stack& stack) {
|
|
IValue input, bias;
|
|
pop(stack, input, bias);
|
|
if (bias.isNone()) {
|
|
push(stack, std::move(input));
|
|
} else {
|
|
push(stack, at::add(input.toTensor(), bias.toTensor(), 1.0));
|
|
}
|
|
};
|
|
},
|
|
aliasAnalysisFromSchema()),
|
|
});
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
|
|
RegisterOperators reg_view_copy({
|
|
Operator(
|
|
"prim::view_copy(Tensor self, int[] size) -> Tensor",
|
|
[](const Node* node) -> Operation {
|
|
return [node](Stack& stack) {
|
|
TORCH_CHECK(
|
|
node->s(attr::name) == "CudaFusionGroup",
|
|
"view_copy is only used by nvfuser to identify non-mutating ",
|
|
"alias ops, should be restored after fusion pass!");
|
|
IValue self, size;
|
|
pop(stack, self, size);
|
|
push(stack, at::native::view(self.toTensor(), size.toIntVector()));
|
|
};
|
|
},
|
|
aliasAnalysisFromSchema()),
|
|
});
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
|
|
RegisterOperators reg_reshape_copy({
|
|
Operator(
|
|
"prim::reshape_copy(Tensor self, int[] shape) -> Tensor",
|
|
[](const Node* node) -> Operation {
|
|
return [node](Stack& stack) {
|
|
TORCH_CHECK(
|
|
node->s(attr::name) == "CudaFusionGroup",
|
|
"reshape_copy is only used by nvfuser to identify non-mutating ",
|
|
"alias ops, should be restored after fusion pass!");
|
|
IValue self, shape;
|
|
pop(stack, self, shape);
|
|
push(
|
|
stack,
|
|
at::native::reshape(self.toTensor(), shape.toIntVector()));
|
|
};
|
|
},
|
|
aliasAnalysisFromSchema()),
|
|
});
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
|
|
RegisterOperators reg_squeeze_copy({
|
|
Operator(
|
|
"prim::squeeze_copy(Tensor self) -> Tensor",
|
|
[](const Node* node) -> Operation {
|
|
return [node](Stack& stack) {
|
|
TORCH_CHECK(
|
|
node->s(attr::name) == "CudaFusionGroup",
|
|
"squeeze_copy is only used by nvfuser to identify non-mutating ",
|
|
"alias ops, should be restored after fusion pass!");
|
|
IValue self;
|
|
pop(stack, self);
|
|
push(stack, at::squeeze(self.toTensor()));
|
|
};
|
|
},
|
|
aliasAnalysisFromSchema()),
|
|
});
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
|
|
RegisterOperators reg_squeeze_dim_copy({
|
|
Operator(
|
|
"prim::squeeze_copy.dim(Tensor self, int dim) -> Tensor",
|
|
[](const Node* node) -> Operation {
|
|
return [node](Stack& stack) {
|
|
TORCH_CHECK(
|
|
node->s(attr::name) == "CudaFusionGroup",
|
|
"squeeze_dim_copy is only used by nvfuser to identify non-mutating ",
|
|
"alias ops, should be restored after fusion pass!");
|
|
IValue self, dim;
|
|
pop(stack, self, dim);
|
|
push(stack, at::squeeze(self.toTensor(), dim.toInt()));
|
|
};
|
|
},
|
|
aliasAnalysisFromSchema()),
|
|
});
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
|
|
RegisterOperators reg_unsqueeze_copy({
|
|
Operator(
|
|
"prim::unsqueeze_copy(Tensor self, int dim) -> Tensor",
|
|
[](const Node* node) -> Operation {
|
|
return [node](Stack& stack) {
|
|
TORCH_CHECK(
|
|
node->s(attr::name) == "CudaFusionGroup",
|
|
"unsqueeze_copy is only used by nvfuser to identify non-mutating ",
|
|
"alias ops, should be restored after fusion pass!");
|
|
IValue self, dim;
|
|
pop(stack, self, dim);
|
|
push(stack, at::unsqueeze(self.toTensor(), dim.toInt()));
|
|
};
|
|
},
|
|
aliasAnalysisFromSchema()),
|
|
});
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
|
|
RegisterOperators reg_infer_unsqueeze_size({
|
|
Operator(
|
|
"prim::infer_unsqueeze_size(int[] a, int dim) -> int[]",
|
|
[](const Node* node) -> Operation {
|
|
return [](Stack& stack) {
|
|
auto dim = pop(stack).toInt();
|
|
auto size = pop(stack).toIntVector();
|
|
if (dim < 0) {
|
|
dim = dim + 1 + size.size();
|
|
}
|
|
auto it = size.begin() + dim;
|
|
size.insert(it, 1);
|
|
push(stack, IValue(size));
|
|
};
|
|
},
|
|
aliasAnalysisFromSchema()),
|
|
});
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
|
|
RegisterOperators reg_infer_squeeze_dim_size({
|
|
Operator(
|
|
"prim::infer_squeeze_size.dim(int[] a, int dim) -> int[]",
|
|
[](const Node* node) -> Operation {
|
|
return [](Stack& stack) {
|
|
auto dim = pop(stack).toInt();
|
|
auto size = pop(stack).toIntVector();
|
|
if (dim < 0) {
|
|
dim = dim + size.size();
|
|
}
|
|
auto it = size.begin() + dim;
|
|
if (*it == 1) {
|
|
size.erase(it);
|
|
}
|
|
push(stack, IValue(size));
|
|
};
|
|
},
|
|
aliasAnalysisFromSchema()),
|
|
});
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
|
|
RegisterOperators reg_infer_squeeze_size({
|
|
Operator(
|
|
"prim::infer_squeeze_size(int[] a) -> int[]",
|
|
[](const Node* node) -> Operation {
|
|
return [](Stack& stack) {
|
|
auto size = pop(stack).toIntVector();
|
|
|
|
for (auto it = size.begin(); it != size.end(); it++) {
|
|
if (*it == 1) {
|
|
auto pre = it - 1;
|
|
size.erase(it);
|
|
it = pre;
|
|
}
|
|
}
|
|
push(stack, IValue(size));
|
|
};
|
|
},
|
|
aliasAnalysisFromSchema()),
|
|
});
|
|
|
|
} // namespace
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|