mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Test Plan: Sandcastle and visual inspection. Reviewed By: igorsugak Differential Revision: D25849205 fbshipit-source-id: ef664c1ad4b3ee92d5c020a5511b4ef9837a09a0
88 lines
2.7 KiB
C++
88 lines
2.7 KiB
C++
#include <gtest/gtest.h>
|
|
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
|
|
#include <torch/csrc/jit/tensorexpr/loopnest.h>
|
|
#include <torch/csrc/jit/tensorexpr/tensor.h>
|
|
#include <torch/torch.h>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
namespace te = torch::jit::tensorexpr;
|
|
namespace F = torch::nn::functional;
|
|
|
|
TEST(Conv, Conv2D) {
|
|
te::KernelScope kernel_scope;
|
|
|
|
// Input dimensions.
|
|
constexpr int N = 1;
|
|
constexpr int C = 3;
|
|
constexpr int H = 11;
|
|
constexpr int W = 11;
|
|
|
|
// Filter dimensions.
|
|
constexpr int K = 8;
|
|
constexpr int R = 3;
|
|
constexpr int S = 3;
|
|
|
|
// Output dims.
|
|
constexpr int OH = H - R + 1;
|
|
constexpr int OW = W - S + 1;
|
|
|
|
// Compute reference result.
|
|
at::Tensor input = torch::randn({N, C, H, W});
|
|
at::Tensor filter = torch::randn({K, C, R, S});
|
|
at::Tensor ref = F::conv2d(input, filter);
|
|
|
|
// Double check the output size is as expected.
|
|
ASSERT_EQ(ref.size(0), N);
|
|
ASSERT_EQ(ref.size(1), K);
|
|
ASSERT_EQ(ref.size(2), OH);
|
|
ASSERT_EQ(ref.size(3), OW);
|
|
|
|
te::Placeholder inputB(te::BufHandle("input", {N, C, H, W}, te::kFloat));
|
|
te::Placeholder filterB(te::BufHandle("filter", {K, C, R, S}, te::kFloat));
|
|
|
|
te::Tensor* conv = te::Reduce(
|
|
"conv",
|
|
{{N, "n"}, {K, "k"}, {OH, "oh"}, {OW, "ow"}},
|
|
te::Sum(),
|
|
// FIXME: We have to use a `std::vector` parameter here and then unpack
|
|
// it, because we don't have an overload allowing for an arbitrary number
|
|
// of ExprHandle/VarHandle parameters.
|
|
[&](const std::vector<te::VarHandle>& v) {
|
|
auto const& n = v[0];
|
|
auto const& k = v[1];
|
|
auto const& oh = v[2];
|
|
auto const& ow = v[3];
|
|
auto const& c = v[4];
|
|
auto const& r = v[5];
|
|
auto const& s = v[6];
|
|
// FIXME: We have to use `call` and construct a `std::vector` here
|
|
// because the `operator()` overload is only specialized for a small
|
|
// number of arguments.
|
|
return inputB.load(n, c, oh + r, ow + s) * filterB.load(k, c, r, s);
|
|
},
|
|
// FIXME: If you forget one of the reduction dims, you get a segfault.
|
|
// Could that be caught by a verifier?
|
|
{{C, "c"}, {R, "r"}, {S, "s"}});
|
|
|
|
// FIXME: It'd be nice to have a single header that pulls in things like
|
|
// LoopNest, IRSimplifier, etc.
|
|
te::LoopNest loop({conv});
|
|
loop.prepareForCodegen();
|
|
te::Stmt* s = loop.root_stmt();
|
|
s = te::IRSimplifier::simplify(s);
|
|
|
|
at::Tensor result = at::empty_like(ref);
|
|
te::SimpleIREvaluator cg(s, {inputB, filterB, conv});
|
|
cg.call(
|
|
{input.data_ptr<float>(),
|
|
filter.data_ptr<float>(),
|
|
result.data_ptr<float>()});
|
|
|
|
ASSERT_TRUE(at::allclose(ref, result, 1e-3, 1e-3));
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|