pytorch/torch/_inductor/pattern_matcher.py
Tugsbayasgalan Manlaibaatar 84d64d72d6 Persist copy_ in training graph for inputs that don't require grad (#111046)
In this PR, we try to keep the input mutations in the forward graph IFF input mutation is data mutation and not metadata mutation and doesn't require grad. This is for optimizing inductor training graphs. (For more details: https://github.com/pytorch/pytorch/issues/109240)

We keep the input mutation in the graph by wrapping the original callable in a wrapper function where in the end we add input.copy_(updated_input) call which is then traced via make_fx. Previously, this was only enabled for forward-only path but unconditionally disabled for joint graph.

Another caveat is that when we are tracing through tensor subclasses, we won't allow any input mutations to be preserved in the graph. The reason is that it makes the code logic quite ugly for no obvious performance improvement.

Most of the changes in this PR are mechanical and I didn't have to make any change to the partitioner. Previously forward/backward heavily relied on metadata field `num_mutated_inps` to figure out whether something is returned as extra output or not. But now since we keep some mutations in the graph, we need to propogate something similar to `num_mutated_inps - num_graph_handled_inps`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111046
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
2023-11-09 00:40:29 +00:00

1380 lines
45 KiB
Python

from __future__ import annotations
import dataclasses
import functools
import inspect
import itertools
import logging
import os
import re
from collections import defaultdict
from typing import (
Any,
Callable,
DefaultDict,
Dict,
Iterable,
List,
NoReturn,
Optional,
Set,
Union,
)
from typing_extensions import TypeGuard
import torch
import torch._guards
import torch.fx
import torch.utils._pytree as pytree
from torch._dispatch.python import enable_python_dispatcher
from torch._dynamo.utils import counters
from torch._prims_common import is_integer_dtype
from torch.fx import Node
from torch.fx.experimental.proxy_tensor import make_fx, maybe_disable_fake_tensor_mode
from torch.fx.immutable_collections import immutable_dict, immutable_list
from .._functorch import config as functorch_config
from .._functorch.aot_autograd import aot_function, make_boxed_func
from .._functorch.partitioners import default_partition
from .._subclasses import FakeTensorMode
from ..fx import Transformer
from . import config
from .decomposition import select_decomp_table
from .lowering import fallback_node_due_to_unsupported_type
log = logging.getLogger(__name__)
aten = torch.ops.aten
prims = torch.ops.prims
Constant = Any
NodeOrConstant = Union[Constant, torch.fx.Node]
class Multiple:
pass
# Sentinel indicating multiple quantities can be matched
MULTIPLE = Multiple()
class Match:
"""
Represents a successfully matched pattern.
"""
def __init__(self, pattern: PatternExpr, args=None, kwargs=None):
super().__init__()
self.pattern = pattern
# The input nodes that must be passed in to the result
self.args = args or []
self.kwargs = kwargs or {}
# The nodes matched in this expression
self.nodes: List[torch.fx.Nodes] = []
# Mapping CallFunction to the node.target
self.targets: Dict[_TargetExpr, torch.fx.Target] = {}
self.ctx: Optional[MatchContext] = None
self.replacement_graph: Optional[torch.fx.Graph] = None
@property
def graph(self) -> torch.fx.Graph:
assert self.ctx
return self.ctx.graph
def extend(self, other: Match):
if self.kwargs:
for key in set(self.kwargs.keys()) & set(other.kwargs.keys()):
if self.kwargs[key] != other.kwargs[key]:
raise FailedMatch("kwarg mismatch: {}", key)
self.args.extend(other.args)
self.nodes.extend(other.nodes)
self.kwargs.update(other.kwargs)
self.targets.update(other.targets)
def bundle(self) -> Match:
# Wrap args in an extra list
self.args = [tuple(self.args)] if self.args else []
return self
def __repr__(self):
return f"Match(..., {self.args}, {self.kwargs})"
def erase_nodes(self, graph: torch.fx.Graph):
for n in reversed(self.nodes):
if not n._erased:
graph.erase_node(n)
def output_nodes(self) -> List[Optional[torch.fx.Node]]:
assert self.ctx
return [
(self.ctx.pattern_to_node[p] if p is not None else None)
for p in self.ctx.outputs
]
def output_node(self) -> torch.fx.Node:
return next(p for p in self.output_nodes() if p)
def replace_with_graph(self, replacement_graph, args):
assert self.ctx
ReplacementPatternEntry.replace_with_graph(
self, self.ctx.graph, replacement_graph, args
)
def replace_by_example(self, replacement_fn, args, trace_fn=None):
assert self.ctx
if trace_fn is None:
trace_fn = fwd_only
replacement = trace_fn(
replacement_fn, torch.fx.map_arg(args, lambda arg: arg.meta["val"])
)
ReplacementPatternEntry.replace_with_graph(
self,
self.ctx.graph,
replacement,
args,
)
class FailedMatch(RuntimeError):
def __init__(self, format_string, *args, **kwargs):
self.format_string = format_string
# We want to construct error messages lazily instead of eagerly, as
# constructing them eagerly can significantly worsen compile times.
if len(format_string) > 200:
raise RuntimeError(
f"Format string too long - use lazy construction of strings instead. Format string is\n {format_string}"
)
self.args = args
self.kwargs = kwargs
def __str__(self):
return self.format_string.format(*self.args, **self.kwargs)
def __bool__(self):
return False
def is_match(m: Union[Match, FailedMatch]) -> TypeGuard[Match]:
"""
TypeGuards cannot act on `self`. Thus this function exists to let mypy
recognize FailedMatch.__bool__ as a TypeGuard.
"""
return bool(m)
class MatchContext:
"""
State needed while running PatternExpr._match().
"""
def __init__(
self,
outputs: List[Optional[PatternExpr]],
pattern_to_node: Optional[Dict[PatternExpr, Node]] = None,
*,
graph: torch.fx.Graph,
):
self.outputs = outputs
self.pattern_to_node = {} if pattern_to_node is None else pattern_to_node
self.graph = graph
self.exclusive_node_set: List[NodeOrConstant] = []
def match(self, pattern, node):
"""wrapper to check reused nodes in patterns"""
if pattern in self.pattern_to_node:
if self.pattern_to_node[pattern] == node:
return Match(pattern) # already checked this node
else:
return FailedMatch("repeated pattern differs")
m = pattern._match(node, self)
assert pattern not in self.pattern_to_node
self.pattern_to_node[pattern] = node if m else None
m.ctx = self
return m
def filter_multi_user_patterns(self):
return {
pattern: node
for pattern, node in self.pattern_to_node.items()
if pattern.has_multiple_users() and node is not None
}
class PatternExpr:
"""
Base class for types of patterns
"""
def _match(
self, node: torch.fx.Node, ctx: MatchContext
) -> Union[Match, FailedMatch]:
raise NotImplementedError()
def match(self, node: torch.fx.Node) -> Union[Match, FailedMatch]:
try:
return MatchContext([self], graph=node.graph).match(self, node)
except FailedMatch as e:
return e
def has_multiple_users(self) -> bool:
return False
def __repr__(self):
return self.__class__.__name__ + "()"
def find_anchor_nodes(self, ctx: MatchContext, searched):
if self in ctx.pattern_to_node:
yield ctx.pattern_to_node[self]
class Arg(PatternExpr):
"""
Capture an arg which will become an input to the handler. Args are
passed in depth first order.
"""
def _match(self, node: NodeOrConstant, ctx: MatchContext):
return Match(self, args=[node]) # matches anything
class Ignored(PatternExpr):
"""
Match an arg, but don't pass it to handler
"""
def _match(self, node: NodeOrConstant, ctx: MatchContext):
return Match(self) # matches anything
def __repr__(self):
return "*"
def pretty_print(self, pp: PatternPrettyPrinter):
return "Ignored()"
class KeywordArg(PatternExpr):
"""
Capture a kwarg which will become an input to the handler.
"""
def __init__(self, name: str):
super().__init__()
self.name = name
def __repr__(self):
return f"KeywordArg({self.name!r})"
def _match(self, node: NodeOrConstant, ctx: MatchContext):
return Match(self, kwargs={self.name: node}) # matches anything
class ExclusiveKeywordArg(PatternExpr):
"""
Capture a kwarg which will become an input to the handler.
"""
def __init__(self, name):
super().__init__()
self.name = name
def __repr__(self):
return f"ExclusiveKeywordArg({self.name!r})"
def _match(self, node: NodeOrConstant, ctx: MatchContext):
if node in ctx.exclusive_node_set:
return FailedMatch("exclusive arg appears twice")
ctx.exclusive_node_set.append(node)
return Match(self, kwargs={self.name: node}) # matches anything
class _TargetExpr(PatternExpr):
"""
Base class for filtering match by node.target
"""
op: Optional[str] = None
def __init__(self, fns, users=1):
if not self.op:
raise NotImplementedError("Shouldn't directly use _BaseNodeMatch")
super().__init__()
fns = [fns] if callable(fns) or isinstance(fns, str) else list(fns)
for fn in list(fns):
if isinstance(fn, torch._ops.OpOverloadPacket):
fns.extend([getattr(fn, overload) for overload in fn.overloads()])
self.fns: List[Union[Callable[..., Any], str]] = fns
self.fns_set: Set[Union[Callable[..., Any], str]] = set(fns)
self.users: Union[int, Multiple] = users
def fns_repr(self) -> str:
first_repr = self.fns[0]
if not isinstance(first_repr, str):
first_repr = first_repr.__name__
if len(self.fns) > 1:
return f"[{first_repr}, ...]"
elif self.fns[0] is getattr(torch, first_repr, None):
return f"torch.{first_repr}"
elif isinstance(self.fns[0], torch._ops.OpOverload):
return str(self.fns[0])
else:
return first_repr
def __repr__(self):
return f"{self.__class__.__name__}({self.fns_repr()})"
def has_multiple_users(self) -> bool:
return isinstance(self.users, Multiple) or self.users > 1
def find_anchor_nodes(self, ctx: MatchContext, searched):
raise NotImplementedError()
def _match_fns(self, node: torch.fx.Node):
return (
isinstance(node, torch.fx.Node)
and node.op == self.op
and extract_target(node) in self.fns_set
)
def _match_users(self, node: torch.fx.Node, ctx: MatchContext):
return (
self in ctx.outputs
or self.users is MULTIPLE
or len(node.users) == self.users
)
class _TargetArgsExpr(_TargetExpr):
"""
Base class for filtering match by node.{target,args,kwargs}
"""
def __init__(self, fns, *args, _users=1, **kwargs):
super().__init__(fns, _users)
self.args = tuple(args)
self.kwargs = dict(kwargs)
if any(
isinstance(x, (dict, list, tuple))
for x in itertools.chain(args, kwargs.values())
):
self.flatten = self.pytree_flatten
else:
self.flatten = self.simple_flatten
self.flat_args_kwargs = self.flatten(self.args, self.kwargs)
@staticmethod
def simple_flatten(args, kwargs: Dict[Any, Any]):
return (*args, *kwargs.values()), (len(args), *kwargs.keys())
@staticmethod
def pytree_flatten(args, kwargs: Dict[Any, Any]):
def norm_spec(s: pytree.TreeSpec):
if s.type is None:
return s
mapping = {immutable_list: list, tuple: list, immutable_dict: dict}
return pytree.TreeSpec(
mapping.get(s.type, s.type),
s.context,
list(map(norm_spec, s.children_specs)),
)
flat, spec = pytree.tree_flatten([args, kwargs])
spec = norm_spec(spec)
return flat, spec
def __repr__(self):
args = [
self.fns_repr(),
*map(repr, self.args),
*[f"{k}={v}" for k, v in self.kwargs.items()],
]
return f"{self.__class__.__name__}({', '.join(args)})"
def pretty_print(self, pp: PatternPrettyPrinter):
args = [
self.fns_repr(),
*(pp.pretty_print(x) for x in self.args),
*[f"{k}={pp.pretty_print(v)}" for k, v in self.kwargs.items()],
]
if isinstance(self.users, Multiple):
args.append("_users=MULTIPLE")
elif self.users > 1:
args.append(f"_users={self.users}")
joiner_str = ", "
return f"{self.__class__.__name__}({joiner_str.join(args)})"
def _match(self, node: torch.fx.Node, ctx: MatchContext):
if not self._match_fns(node) or len(node.args) != len(self.args):
return FailedMatch("function_mismatch: node={}, pattern={}", node, self)
if not self._match_users(node, ctx):
return FailedMatch("multiple_users {}", self)
_args = node.args
_kwargs = node.kwargs
if len(_kwargs) < len(self.kwargs):
from torch.fx.operator_schemas import normalize_function
normalized_args_and_kwargs = normalize_function(
node.target, node.args, node.kwargs
)
if normalized_args_and_kwargs is None:
return FailedMatch("function_mismatch: node={}, pattern={}", node, self)
else:
_args, _kwargs = normalized_args_and_kwargs
if len(_args) == len(self.args) and len(_kwargs) >= len(self.kwargs):
_kwargs = {i: _kwargs[i] for i in _kwargs if i in self.kwargs}
else:
return FailedMatch(
"function_mismatch: node={}, pattern={}", node, self
)
else:
_kwargs = {i: _kwargs[i] for i in _kwargs if i in self.kwargs}
node_items, node_spec = self.flatten(_args, _kwargs)
self_items, self_spec = self.flat_args_kwargs
if node_spec != self_spec:
return FailedMatch("args_structure {} {}", node_spec, self_spec)
assert len(node_items) == len(self_items)
m = Match(self)
for i, pattern, child_node in zip(itertools.count(), self_items, node_items):
if isinstance(pattern, PatternExpr):
child_match = ctx.match(pattern, child_node)
if not child_match:
return child_match
m.extend(child_match)
elif isinstance(child_node, torch.fx.Node) or child_node != pattern:
return FailedMatch(
"constant_args: {} {!r}!={pattern!r}", node, child_node
)
m.nodes.append(node)
m.targets[self] = node.target
return m
def find_anchor_nodes(self, ctx: MatchContext, searched):
"""
This is used when we are matching a pattern with multiple outputs.
There is a partial match (stored in ctx) and we want to walk
this pattern to find a connection to an already-matched node.
Yields candidate nodes that `self._match` might like.
"""
if self in ctx.pattern_to_node:
yield ctx.pattern_to_node[self]
return
for pattern in self.flat_args_kwargs[0]:
if isinstance(pattern, PatternExpr):
for other_node in pattern.find_anchor_nodes(ctx, searched):
if not isinstance(other_node, torch.fx.Node):
continue
for node in other_node.users:
if node not in searched:
if self._match_fns(node):
yield node
searched.add(node)
class CallFunction(_TargetArgsExpr):
"""
Matches a call_function node in the FX graphs: `fns[i](*args, **kwargs)`
"""
op = "call_function"
class CallMethod(_TargetArgsExpr):
"""
Matches a call_method node in the FX graphs: `fns[i].method(*args, **kwargs)`
"""
op = "call_method"
class CallModule(_TargetArgsExpr):
"""
Matches a call_module node in the FX graphs: `module(*args, **kwargs)`
"""
op = "call_module"
class _TargetExprVarArgs(_TargetExpr):
"""
Matches a call_function node with any arguments which are passed into the pattern
"""
def _match(self, node: torch.fx.Node, ctx: MatchContext):
if not self._match_fns(node):
return FailedMatch("function_mismatch")
if not self._match_users(node, ctx):
return FailedMatch("multiple_users")
m = Match(self)
m.nodes.append(node)
m.targets[self] = node.target
m.args.extend(node.args)
m.kwargs.update(node.kwargs)
return m
class CallFunctionVarArgs(_TargetExprVarArgs):
op = "call_function"
class CallMethodVarArgs(_TargetExprVarArgs):
op = "call_method"
class CallModuleVarArgs(_TargetExprVarArgs):
op = "call_module"
class ListOf(PatternExpr):
"""
Matches a repeated pattern
"""
def __init__(self, pattern: PatternExpr, partial=False):
super().__init__()
assert isinstance(pattern, PatternExpr)
self.pattern = pattern
self.partial = partial
def __repr__(self):
return f"{self.__class__.__name__}({self.pattern})"
def _match(self, node: List[torch.fx.Node], ctx: MatchContext):
if not isinstance(node, (list, tuple)) or len(node) == 0:
return FailedMatch("non_list")
m = Match(self)
# Propagating patterns with multiple users will ensure we don't revisit
# the same nodes
pattern_to_node = ctx.filter_multi_user_patterns()
matched = False
for i, child_node in enumerate(node):
child_ctx = MatchContext(
ctx.outputs, pattern_to_node, graph=child_node.graph
)
child_match = child_ctx.match(self.pattern, child_node)
pattern_to_node = child_ctx.filter_multi_user_patterns()
if not child_match:
if not self.partial:
return FailedMatch("list[{}]: {}", i, child_match)
continue
matched = True
m.extend(child_match.bundle())
if not matched:
return FailedMatch("list: no_match")
return m.bundle()
class MultiOutputPattern(PatternExpr):
def __init__(self, outputs):
super().__init__()
assert all(isinstance(x, (PatternExpr, type(None))) for x in outputs), outputs
self.outputs: List[Optional[PatternExpr]] = outputs
@property
def fns(self):
assert self.outputs[0] and hasattr(self.outputs[0], "fns")
return self.outputs[0].fns
def __repr__(self):
return f"{self.__class__.__name__}({self.outputs})"
def pretty_print(self, pp: PatternPrettyPrinter):
args = [pp.pretty_print(x) for x in self.outputs]
joiner_str = f",\n{' '}"
str_out = f"{self.__class__.__name__}([{joiner_str.join(args)}"
str_out = f"{str_out}\n])"
return str_out
def _match(self, node: torch.fx.Node, ctx: MatchContext):
m = ctx.match(self.outputs[0], node)
if not m:
return m
for pattern in self.outputs[1:]:
if pattern is None:
continue
child_match = self._match_from_anchors(pattern, ctx)
if not child_match:
return child_match
m.extend(child_match)
return m
def _match_from_anchors(self, pattern, ctx):
prior = dict(ctx.pattern_to_node)
m = FailedMatch("no anchor found")
for node in pattern.find_anchor_nodes(ctx, set()):
m = ctx.match(pattern, node)
if m:
return m
# revert any partial matches
ctx.pattern_to_node = dict(prior)
return m
def match(self, node: torch.fx.Node) -> Union[Match, FailedMatch]:
try:
return MatchContext(self.outputs, graph=node.graph).match(self, node)
except FailedMatch as e:
return e
class RepeatedExpr(PatternExpr):
"""
Checks for a repeated pattern. Useful for repeated operations after a node such as `split` or `unbind`
"""
def __init__(self, inner_pattern: PatternExpr):
super().__init__()
assert hasattr(inner_pattern, "fns")
self.inner_pattern = inner_pattern
@property
def fns(self):
return self.inner_pattern.fns
def _match(self, node: torch.fx.Node, ctx: MatchContext):
m = ctx.match(self.inner_pattern, node)
if not m:
return m
ctx.pattern_to_node.pop(
self.inner_pattern,
)
# Check all anchor nodes match the pattern
for anchor_node in self.inner_pattern.find_anchor_nodes(ctx, set()):
anchor_m = MatchContext([self], graph=node.graph).match(
self.inner_pattern, anchor_node
)
if not anchor_m:
return anchor_m
m.extend(anchor_m)
return m
class PatternPrettyPrinter:
"""
Serializes Patterns to executable python.
XXX: currently only used and tested for fuse attention patterns. May not cover
all patterns.
"""
def __init__(self):
self.namespace = torch.fx.graph._Namespace()
self.memoized_objs_names: Dict[PatternExpr, str] = {}
self.memoized_objs_pp: Dict[PatternExpr, str] = {}
@staticmethod
def run(obj: PatternExpr, output_name="output"):
"""
Serializes obj to python code with obj written out to `output_name`
"""
pp = PatternPrettyPrinter()
assert hasattr(obj, "pretty_print")
out_str = obj.pretty_print(pp=pp)
output = []
for key in pp.memoized_objs_names:
output.append(f"{pp.memoized_objs_names[key]} = {pp.memoized_objs_pp[key]}")
output.append(f"{output_name} = {out_str}")
return "\n".join(output)
def pretty_print(self, obj):
if isinstance(obj, _TargetArgsExpr):
if memoized_name := self.memoized_objs_names.get(obj):
return memoized_name
else:
return self.memoize(obj)
if hasattr(obj, "pretty_print"):
return obj.pretty_print(self)
return repr(obj)
def memoize(self, obj):
obj_str = obj.pretty_print(self)
obj_name = obj.fns_repr()
for prefix in ("aten.", "torch.", "prims."):
obj_name = obj_name.replace(prefix, "")
tmp_name = self.namespace.create_name(obj_name, None)
self.memoized_objs_names[obj] = tmp_name
self.memoized_objs_pp[obj] = obj_str
return tmp_name
@dataclasses.dataclass
class PatternEntry:
pattern: PatternExpr
extra_check: Callable[[Match], bool]
def apply(self, match: Match, graph: torch.fx.Graph, node: torch.fx.Node):
raise NotImplementedError()
def register(self, pass_dicts, target=None, prepend=False):
if target is None:
assert hasattr(self.pattern, "fns")
for fn in self.pattern.fns:
self.register(pass_dicts, fn, prepend=prepend)
elif isinstance(pass_dicts, (dict, PatternMatcherPass)):
if prepend:
pass_dicts[target].insert(0, self)
else:
pass_dicts[target].append(self)
else:
for x in pass_dicts:
self.register(x, target, prepend=prepend)
@dataclasses.dataclass
class LoweringPatternEntry(PatternEntry):
handler: Callable[..., Any]
def apply(self, match: Match, graph: torch.fx.Graph, node: torch.fx.Node):
handler = functools.wraps(self.handler)(functools.partial(self.handler, match))
with graph.inserting_before(node):
replacement = graph.call_function(handler, tuple(match.args), match.kwargs)
replacement.meta.update(node.meta)
node.replace_all_uses_with(replacement)
assert match.nodes[-1] is node
match.erase_nodes(graph)
@dataclasses.dataclass
class GraphPatternEntry(PatternEntry):
"""
A pattern that runs a function on the FX graph
"""
handler: Callable[..., Any]
def apply(self, match: Match, graph: torch.fx.Graph, node: torch.fx.Node):
with graph.inserting_before(node):
self.handler(match, *match.args, **match.kwargs)
@dataclasses.dataclass
class ReplacementPatternEntry(PatternEntry):
normalize_args: Callable[..., List[Any]]
@staticmethod
def replace_with_graph(
match: Match,
graph: torch.fx.Graph,
replacement_graph: torch.fx.Graph,
args: List[Any],
):
output_nodes = match.output_nodes()
first_node = output_nodes[0]
class Replacer(torch.fx.Interpreter):
call_method = None
call_module = None
get_attr = None
def run_node(self, node) -> Any:
if node.op in ("placeholder", "output"):
return super().run_node(node)
if node.op == "call_function":
target = node.target
args, kwargs = self.fetch_args_kwargs_from_env(node)
result = graph.call_function(target, args, kwargs)
if "val" in node.meta and "val" not in result.meta:
result.meta["val"] = node.meta["val"]
if isinstance(node.meta["val"], torch.Tensor):
assert "tensor_meta" in node.meta
result.meta["tensor_meta"] = node.meta["tensor_meta"]
return result
raise NotImplementedError(f"unhandled {node}")
output_nodes = match.output_nodes()
if len(output_nodes) == 1:
last_node = output_nodes[0]
else:
assert output_nodes[0]
nodes = list(output_nodes[0].graph.nodes)
indices = [
(nodes.index(n), n)
for n in output_nodes
if isinstance(n, torch.fx.Node)
]
last_node = min(indices, key=lambda tup: tup[0])[1]
def percolate_tags(node, recompute_tag):
for arg in node.all_input_nodes:
if hasattr(arg, "meta"):
arg.meta["recompute"] = recompute_tag
percolate_tags(arg, recompute_tag)
with graph.inserting_before(last_node):
replacement = Replacer(replacement_graph).run(*args)
if isinstance(replacement, torch.fx.Node):
replacement = [replacement]
assert len(replacement) == len(output_nodes)
for old, new in zip(output_nodes, replacement):
if old is None:
assert new is None
elif new is None:
old.replace_all_uses_with(None)
else:
if "val" not in new.meta:
new.meta.update(old.meta)
# Preserve the recompute tags in the replacement graph. We
# look at the recompute tags of the original output node to
# propagate the tag from the output all the way to the input
# args in the replacement graph.
# Note that this is best effort. Since patterns are from
# many to many, there is no easy way to correctly map the
# recomputable tags. It is possible in some scenarios that we
# incorrectly tag some nodes as recomputables.
if "recompute" in old.meta:
percolate_tags(new, old.meta["recompute"])
old.replace_all_uses_with(new)
match.erase_nodes(graph)
def apply(self, match: Match, graph: torch.fx.Graph, node: torch.fx.Node):
self.replace_with_graph(
match,
graph,
match.replacement_graph,
self.normalize_args(*match.args, **match.kwargs),
)
def _return_true(match):
return True
def register_replacement(
search_fn,
replace_fn,
example_inputs: Iterable[Any],
trace_fn: Callable[[Callable[..., Any], Iterable[Any]], torch.fx.GraphModule],
pass_dicts,
extra_check=_return_true,
scalar_workaround=(),
exclusive_arg_names=(),
search_fn_pattern=None,
):
"""
Create a replacement rule based on example functions that get traced
to create patterns. This supports both training and inference when
run on a joint forward+backward graph.
Args:
search_fn: traced to give original pattern
replace_fn: traced to give replacement graph
example_inputs: example inputs for initial trace
trace_fn: fwd_only or joint_fwd_bwd
pass_dict: dict of passes to register to
extra_check: additional check to run on match(using real shapes)
"""
argnames = [*inspect.signature(search_fn).parameters.keys()]
def check_fn(match: Match):
"""
Often shapes get burned into the pattern, so our initial match ran with
`ignore_types=(int, ...)`.
Recheck the match with the correct shapes.
"""
for name in argnames:
if name not in match.kwargs:
raise RuntimeError(
f"Not all inputs to pattern found in match.kwargs. Perhaps one "
f"of the inputs is unused? argnames={argnames}, match.kwargs={match.kwargs}"
)
args = list(
torch.fx.map_arg(
[match.kwargs[name] for name in argnames], lambda n: n.meta["val"] # type: ignore[has-type]
)
)
with torch._dynamo.utils.detect_fake_mode(args):
for i, grad in enumerate(requires_grad):
if isinstance(args[i], torch.Tensor):
if grad and is_integer_dtype(args[i].dtype):
return False
args[i] = torch.empty_strided(
args[i].size(),
args[i].stride(),
dtype=args[i].dtype,
device=args[i].device,
requires_grad=grad,
)
specific_graph = trace_fn(search_fn, args)
specific_pattern = fx_to_pattern(
specific_graph,
argnames=argnames,
exclusive_arg_names=exclusive_arg_names, # type: ignore[has-type]
scalar_workaround=scalar_workaround,
)
specific_pattern_match = specific_pattern.match(match.output_nodes()[0])
if specific_pattern_match and extra_check(specific_pattern_match):
# trace the pattern using the shapes from the user program
match.replacement_graph = trace_fn(replace_fn, args)
return True
return False
def normalize_args(**kwargs):
args = []
for name in argnames: # type: ignore[has-type]
args.append(kwargs.pop(name))
for i in range(1, len(kwargs) + 1):
if f"tangents_{i}" not in kwargs:
break
args.append(kwargs.pop(f"tangents_{i}"))
assert not kwargs, f"leftover kwargs: {kwargs!r}"
return args
if trace_fn is joint_fwd_bwd:
# If inference mode is enabled during compilation, assume that we don't
# want to match on any training graph patterns
if torch.is_inference_mode_enabled():
return False
# TODO: Revisit the functionalize_rng_ops for lowmem dropout
with functorch_config.patch(functionalize_rng_ops=False):
requires_grad: List[bool] = [
isinstance(x, torch.Tensor) and x.requires_grad for x in example_inputs
]
if search_fn_pattern is None:
pattern = gen_pattern(
search_fn,
example_inputs,
trace_fn,
scalar_workaround,
exclusive_arg_names,
)
else:
pattern = search_fn_pattern
pattern_repr = PatternPrettyPrinter.run(pattern)
assert pattern_repr not in _seen_patterns
_seen_patterns.add(pattern_repr)
pattern = ReplacementPatternEntry(
pattern=pattern,
extra_check=check_fn,
normalize_args=normalize_args,
)
pattern.register(pass_dicts)
return pattern.pattern
@functorch_config.patch(functionalize_rng_ops=False)
def gen_pattern(
search_fn, example_inputs, trace_fn, scalar_workaround=(), exclusive_arg_names=()
) -> PatternExpr:
argnames = [*inspect.signature(search_fn).parameters.keys()]
if scalar_workaround == ():
scalar_workaround = {}
flat_inputs = []
input_idx = 0 # Positional arguments index
for argname in argnames:
if argname in scalar_workaround:
flat_inputs.append(scalar_workaround[argname])
else:
flat_inputs.append(example_inputs[input_idx])
input_idx += 1
search_gm = trace_fn(search_fn, flat_inputs)
return fx_to_pattern(
search_gm,
ignore_types=(int, float, list, torch.device, torch.dtype),
argnames=argnames,
scalar_workaround=scalar_workaround,
exclusive_arg_names=exclusive_arg_names,
)
def register_lowering_pattern(
pattern: PatternExpr, extra_check=_return_true, *, pass_dict, prepend=False
):
"""
Register an aten to inductor IR replacement pattern. The decorated
function is saved and then called a lowering time allowing direct
pattern to inductor IR conversion.
"""
def decorator(handler):
assert callable(handler)
LoweringPatternEntry(
pattern=pattern, extra_check=extra_check, handler=handler
).register(pass_dict, prepend=prepend)
handler._inductor_lowering_function = True
return handler
return decorator
def register_graph_pattern(
pattern: PatternExpr, extra_check=_return_true, *, pass_dict, prepend=False
):
"""
Register a pattern that runs a function on the FX graph, allowing
custom transformation code.
"""
def decorator(handler):
assert callable(handler)
GraphPatternEntry(
pattern=pattern, extra_check=extra_check, handler=handler
).register(pass_dict, prepend=prepend)
return handler
return decorator
def is_start_of_fx_graph(graph: torch.fx.GraphModule, node: torch.fx.Node) -> bool:
# first node in the graph
return node is next(iter(graph.nodes))
# match: copy_, relu_, _set_grad_enabled, manual_seed, enter_functional_autocast, etc
_mutation_op_re = re.compile(r"_$|(\b|_)(set|enter|exit|seed)(\b|_)")
def is_mutation_op(node: torch.fx.Node) -> bool:
if node.op == "call_function":
if _mutation_op_re.search(node.target.__name__):
return True
elif node.op == "call_method":
if _mutation_op_re.search(node.target):
return True
return node.kwargs.get("out") is not None
def get_mutation_region_id(graph: torch.fx.GraphModule, node: torch.fx.Node) -> int:
n = node
while "mutation_region_id" not in n.meta and not is_start_of_fx_graph(graph, n):
n = n.prev
mutation_region_id = n.meta.get("mutation_region_id", 0)
while n is not node:
n = n.next
if is_mutation_op(n):
mutation_region_id += 1
n.meta["mutation_region_id"] = mutation_region_id
return mutation_region_id
def should_compute_mutation_region_ids(graph: torch.fx.GraphModule) -> bool:
return "mutation_region_id" not in next(iter(graph.nodes)).meta
def compute_mutation_region_ids(graph: torch.fx.GraphModule):
mutation_region_id = 0
for nd in graph.nodes:
if is_mutation_op(nd):
mutation_region_id += 1
nd.meta["mutation_region_id"] = mutation_region_id
class PatternMatcherPass:
def __init__(self, prevent_match_across_mutations=False):
super().__init__()
self.patterns: DefaultDict[torch.fx.Target, List[PatternEntry]] = defaultdict(
list
)
self.prevent_match_across_mutations = prevent_match_across_mutations
def __getitem__(self, item: torch.fx.Target) -> List[PatternEntry]:
return self.patterns[item]
def apply(self, graph: torch.fx.GraphModule) -> int:
if not self.patterns:
return 0
if isinstance(graph, torch.fx.GraphModule):
graph = graph.graph
if self.prevent_match_across_mutations:
if should_compute_mutation_region_ids(graph):
compute_mutation_region_ids(graph)
get_mutation_region_id_partial = functools.partial(
get_mutation_region_id, graph
)
count = 0
for node in reversed(graph.nodes):
target = extract_target(node)
if (
node.op in ["call_function", "call_method", "call_module"]
and target in self.patterns
):
# conservatively not applying pattern for cpu input,
# since some of the patterns induce codegen and split nodes.
# Note: we will only skip cpu compute if disable_cpp_codegen=True
if fallback_node_due_to_unsupported_type(node, allow_cpu_inputs=False):
continue
for entry in self.patterns[target]:
if node._erased:
break
m = entry.pattern.match(node)
# pattern match crosses mutation barrier - discard
if (
self.prevent_match_across_mutations
and is_match(m)
and len(set(map(get_mutation_region_id_partial, m.nodes))) != 1
):
continue
if os.environ.get("TORCHINDUCTOR_PATTERN_MATCH_DEBUG") == node.name:
log.warning("%s%s %s %s", node, node.args, m, entry.pattern)
if is_match(m) and entry.extra_check(m):
count += 1
entry.apply(m, graph, node)
counters["inductor"]["pattern_matcher_count"] += 1
counters["inductor"]["pattern_matcher_nodes"] += len(m.nodes)
return count
def clear(self):
self.patterns.clear()
def _not_implemented(*args, **kwargs) -> NoReturn:
raise NotImplementedError()
def fx_to_pattern(
gm,
ignore_types=(),
argnames=(),
scalar_workaround=(),
exclusive_arg_names=(),
) -> PatternExpr:
"""
Convert an FX graph into a PatternExpr. This is useful for simple
patterns that can only match single functions and fixed-length lists.
"""
# scalar_workaround is a hack to capture dropout_p
# see https://github.com/pytorch/pytorch/issues/97894
scalar_workaround = scalar_workaround or {}
inv_scalar_workaround = {v: k for k, v in scalar_workaround.items()}
assert len(inv_scalar_workaround) == len(scalar_workaround)
def process_arg(x):
if isinstance(x, (float, int)) and x in inv_scalar_workaround:
return KeywordArg(inv_scalar_workaround[x])
if type(x) in ignore_types:
return Ignored()
if isinstance(x, list) and all(isinstance(y, Ignored) for y in x) and x:
return Ignored()
return x
argnum = itertools.count()
class Converter(torch.fx.Interpreter):
call_method = _not_implemented
call_module = _not_implemented
get_attr = _not_implemented
def placeholder(self, target, args, kwargs):
n = next(argnum)
if n < len(argnames):
name = argnames[n]
elif argnames:
assert target.startswith("tangent")
name = target
else:
target = re.sub(r"_\d+$", "", target) # de-mangle arg name
name = target
if name in exclusive_arg_names:
return ExclusiveKeywordArg(name)
else:
return KeywordArg(name)
def call_function(self, target, args, kwargs):
args, kwargs = pytree.tree_map(process_arg, (args, kwargs))
if list in ignore_types:
# Handle a burned in tensor size which are now [Ignored(), Ignored(), ...]
args = [process_arg(a) for a in args]
kwargs = {k: process_arg(a) for k, a in kwargs.items()}
return CallFunction(target, *args, **kwargs)
def run_node(self, n):
rv = super().run_node(n)
if n.op == "output" and isinstance(rv, tuple):
assert len(rv) == len(n.args[0])
for r, arg in zip(rv, n.args[0]):
r.users = len(arg.users)
else:
rv.users = len(n.users)
return rv
pattern = Converter(gm).run()
if not isinstance(pattern, PatternExpr):
return MultiOutputPattern(pytree.tree_leaves(pattern))
return pattern
@torch.no_grad()
def fwd_only(fn, args) -> torch.fx.GraphModule:
"""Build a normalized inference graph, for use with fx_to_pattern"""
# TODO - look into using aot autograd, asserting no mutating ops here
with enable_python_dispatcher():
gm = make_fx(fn, select_decomp_table())(*args)
gm.graph.eliminate_dead_code()
gm.recompile()
return gm
@torch.enable_grad()
def joint_fwd_bwd(fn, args) -> torch.fx.GraphModule:
"""Build a normalized training graph, for use with fx_to_pattern"""
gm: Optional[torch.fx.GraphModule] = None
def record_joint_graph(joint_graph, inputs, **kwargs):
nonlocal gm
assert not gm
gm = clone_graph(joint_graph)
return default_partition(joint_graph, inputs, **kwargs)
with torch._guards.tracing(None):
aot_function(
fn,
lambda g, i: make_boxed_func(g),
partition_fn=record_joint_graph,
decompositions=select_decomp_table(),
keep_inference_input_mutations=True,
enable_log=False,
)(*args)
assert gm
from .fx_passes.joint_graph import pointless_view
matcher_pass = PatternMatcherPass()
pattern = CallFunction(
torch.ops.aten.view.default, KeywordArg("arg"), KeywordArg("size")
)
GraphPatternEntry(
pattern=pattern, handler=pointless_view, extra_check=_return_true
).register(matcher_pass.patterns)
matcher_pass.apply(gm.graph)
# remove in/out specs
gm.graph._codegen = torch.fx.graph.CodeGen()
gm.graph.eliminate_dead_code()
gm.recompile()
return gm
def _args(n: torch.fx.Node) -> List[torch.fx.node.Argument]:
args: List[torch.fx.node.Argument] = list()
torch.fx.map_arg((n.args, n.kwargs), args.append)
return args
def stable_topological_sort(graph: torch.fx.Graph):
waiting = defaultdict(list)
ready = set()
cursor = None
def check(node):
waiting_for = [x for x in _args(node) if x not in ready]
if waiting_for:
# revisit this node when next input is ready
waiting[waiting_for[0]].append(node)
else:
nonlocal cursor
cursor = node
ready.add(node)
for other in waiting.pop(node, ()):
cursor.append(other)
check(other)
for n in list(graph.nodes):
check(n)
assert not waiting and len(ready) == len(graph.nodes)
def init_once_fakemode(fn: Callable[..., Any]):
"""Wrapper around lazy init functions in fx_passes/"""
@functools.lru_cache(None)
@functools.wraps(fn)
def lazy_init():
counters_ref = counters["inductor"].copy()
with torch._guards.tracing(
None
), maybe_disable_fake_tensor_mode(), FakeTensorMode():
result = fn()
# clear view matches encountered during tracing
counters["inductor"] = counters_ref
return result
return lazy_init
def config_flag(name):
"""Function for extra_check to put pass behind a flag"""
def flag_check(match):
return getattr(config, name)
return flag_check
def clone_graph(input_graph: torch.fx.GraphModule) -> torch.fx.GraphModule:
class CopyGraph(Transformer):
def run_node(self, old_node):
new_node = super().run_node(old_node)
if isinstance(new_node, torch.fx.Proxy):
new_node.node.meta.update(old_node.meta)
new_node.node.name = self.new_graph._graph_namespace.create_name(
old_node.name, None
)
return new_node
return CopyGraph(input_graph).transform()
_seen_patterns: Set[str] = set()
def get_arg_value(
node: torch.fx.Node, arg_number: int, kwarg_name: Optional[str] = None
):
return (
node.args[arg_number]
if len(node.args) > arg_number
else node.kwargs.get(kwarg_name)
)
def filter_nodes(nodes: Iterable[torch.fx.Node], fn) -> List[torch.fx.Node]:
fns = [fn]
if isinstance(fn, torch._ops.OpOverloadPacket):
fns.extend([getattr(fn, overload) for overload in fn.overloads()])
return [node for node in nodes if node.target in fns]
def extract_target(node: Node):
"""For call_function and call_method, we directly use the target function;
For call_module, the target is string, and we treat the module class
as a function.
"""
if node.op == "call_module":
return getattr(node.graph.owning_module, node.target).__class__
return node.target