mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: In-tree changes to pytorch to support complex numbers are being submitted here. Out-of-tree support for complex numbers is here: [pytorch-cpu-strided-complex extension](https://gitlab.com/pytorch-complex/pytorch-cpu-strided-complex) Note: These changes do not support AVX/SSE operations on complex tensors. Changes so far: - [x] Added complex support of torch.empty. - [x] Added complex support of CopyKernels - [x] Added complex support of BinaryOp kernels Once these changes are applied the rest of the kernels are pretty easy. ezyang I have fixed the issues in the original [PR: 25373](https://github.com/pytorch/pytorch/pull/25373). Pull Request resolved: https://github.com/pytorch/pytorch/pull/25534 Differential Revision: D17188390 Pulled By: ezyang fbshipit-source-id: ade9fb00b2caa89b0f66a4de70a662b62db13a8c
47 lines
1.9 KiB
C++
47 lines
1.9 KiB
C++
#include <torch/csrc/utils/tensor_layouts.h>
|
|
#include <ATen/Layout.h>
|
|
#include <c10/core/ScalarType.h>
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/Layout.h>
|
|
#include <torch/csrc/python_headers.h>
|
|
#include <torch/csrc/utils/object_ptr.h>
|
|
|
|
namespace torch { namespace utils {
|
|
|
|
void initializeLayouts() {
|
|
auto torch_module = THPObjectPtr(PyImport_ImportModule("torch"));
|
|
if (!torch_module) throw python_error();
|
|
|
|
PyObject *strided_layout = THPLayout_New(at::Layout::Strided, "torch.strided");
|
|
Py_INCREF(strided_layout);
|
|
if (PyModule_AddObject(torch_module, "strided", strided_layout) != 0) {
|
|
throw python_error();
|
|
}
|
|
// for now, let's look these up by Backend; we could create our own enum in the future.
|
|
registerLayoutObject((THPLayout*)strided_layout, at::Backend::CPU);
|
|
registerLayoutObject((THPLayout*)strided_layout, at::Backend::CUDA);
|
|
registerLayoutObject((THPLayout*)strided_layout, at::Backend::MSNPU);
|
|
registerLayoutObject((THPLayout*)strided_layout, at::Backend::XLA);
|
|
registerLayoutObject((THPLayout*)strided_layout, at::Backend::QuantizedCPU);
|
|
|
|
PyObject *sparse_coo_layout = THPLayout_New(at::Layout::Sparse, "torch.sparse_coo");
|
|
Py_INCREF(sparse_coo_layout);
|
|
if (PyModule_AddObject(torch_module, "sparse_coo", sparse_coo_layout) != 0) {
|
|
throw python_error();
|
|
}
|
|
registerLayoutObject((THPLayout*)sparse_coo_layout, at::Backend::SparseCPU);
|
|
registerLayoutObject((THPLayout*)sparse_coo_layout, at::Backend::SparseCUDA);
|
|
|
|
PyObject *mkldnn_layout = THPLayout_New(at::Layout::Mkldnn, "torch._mkldnn");
|
|
Py_INCREF(mkldnn_layout);
|
|
if (PyModule_AddObject(torch_module, "_mkldnn", mkldnn_layout) != 0) {
|
|
throw python_error();
|
|
}
|
|
registerLayoutObject((THPLayout*)mkldnn_layout, at::Backend::MkldnnCPU);
|
|
registerLayoutObject((THPLayout*)strided_layout, at::Backend::ComplexCPU);
|
|
registerLayoutObject((THPLayout*)strided_layout, at::Backend::ComplexCUDA);
|
|
}
|
|
|
|
}} // namespace torch::utils
|