mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
reland of https://github.com/pytorch/pytorch/pull/116559, which was reverted by internal. The underlying reason for the revert is that the torch.dynamo.disable can't be used by the pytorch codebase, as it's conflicting with some torch.deploy together, although the later one only run some inference, but it somehow take that weird dependency on fsdp.. We have seen this issue with our functional collectives that we can't use any dynamo components otherwise torch.deploy would complain.. verified internally that after removing torch.dynamo.disable the test passed again Pull Request resolved: https://github.com/pytorch/pytorch/pull/117020 Approved by: https://github.com/awgu
1648 lines
66 KiB
Python
1648 lines
66 KiB
Python
import functools
|
|
import logging
|
|
from enum import auto, Enum
|
|
from typing import Any, Callable, Dict, List, no_type_check, Optional, Set, Tuple
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.distributed.fsdp._traversal_utils as traversal_utils
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.autograd import Variable
|
|
from torch.autograd.graph import register_multi_grad_hook
|
|
from torch.distributed.algorithms._comm_hooks import LOW_PRECISION_HOOKS
|
|
from torch.distributed.fsdp._common_utils import (
|
|
_assert_in_training_states,
|
|
_FSDPState,
|
|
_get_module_fsdp_state,
|
|
_is_composable,
|
|
_log_post_backward_hook,
|
|
_no_dispatch_record_stream,
|
|
clean_tensor_name,
|
|
TrainingState,
|
|
)
|
|
from torch.distributed.fsdp._flat_param import (
|
|
FlatParameter,
|
|
FlatParamHandle,
|
|
HandleShardingStrategy,
|
|
HandleTrainingState,
|
|
RESHARD_AFTER_FORWARD_HANDLE_STRATEGIES,
|
|
)
|
|
from torch.distributed.fsdp._init_utils import HYBRID_SHARDING_STRATEGIES
|
|
from torch.distributed.fsdp.api import BackwardPrefetch
|
|
from torch.distributed.utils import (
|
|
_apply_to_tensors,
|
|
_cast_forward_inputs,
|
|
_p_assert,
|
|
_to_kwargs,
|
|
)
|
|
from torch.utils import _pytree as pytree
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
# Do not include "process_group" to enable hybrid shard and MoE cases
|
|
HOMOGENEOUS_ATTR_NAMES = (
|
|
"_use_orig_params",
|
|
"limit_all_gathers",
|
|
"_use_full_prec_in_eval",
|
|
)
|
|
|
|
|
|
class _PrefetchMode(Enum):
|
|
BACKWARD = auto()
|
|
FORWARD = auto()
|
|
|
|
|
|
def _get_fsdp_root_states_with_modules(
|
|
module: nn.Module,
|
|
) -> Tuple[List[_FSDPState], List[nn.Module]]:
|
|
"""
|
|
Returns a tuple containing:
|
|
1. A list of the root ``_FSDPState`` instances in the module tree rooted at
|
|
``module`` without any duplicates and following the ``module.modules()``
|
|
traversal order (which is assumed to be depth-first).
|
|
2. A corresponding list of the root modules owning the states in the first
|
|
list.
|
|
|
|
This is similar to :func:`_get_fsdp_states_with_modules` except that we
|
|
must call :func:`_is_fsdp_root` to force a lazy initialization to determine
|
|
the FSDP root in case lazy initialization has not yet happened.
|
|
"""
|
|
fsdp_root_states: List[_FSDPState] = []
|
|
fsdp_root_modules: List[nn.Module] = []
|
|
visited_fsdp_states: Set[_FSDPState] = set()
|
|
# NOTE: This function assumes that `module.modules()` proceeds top-down.
|
|
for submodule in module.modules():
|
|
optional_state = _get_module_fsdp_state(submodule)
|
|
if (
|
|
optional_state is not None
|
|
and optional_state not in visited_fsdp_states
|
|
and _is_fsdp_root(optional_state, submodule)
|
|
):
|
|
visited_fsdp_states.add(optional_state)
|
|
fsdp_root_states.append(optional_state)
|
|
fsdp_root_modules.append(submodule)
|
|
return fsdp_root_states, fsdp_root_modules
|
|
|
|
|
|
def _get_fsdp_root_states(module: nn.Module) -> List[_FSDPState]:
|
|
"""See :func:`_get_fsdp_root_states_with_modules`."""
|
|
fsdp_root_states, _ = _get_fsdp_root_states_with_modules(module)
|
|
return fsdp_root_states
|
|
|
|
|
|
def _is_fsdp_root(state: _FSDPState, module: nn.Module) -> bool:
|
|
"""
|
|
Returns if ``state`` corresponds to that of an FSDP root.
|
|
|
|
For the wrapper code path, ``state`` and ``module`` should be the same. For
|
|
the non-wrapper code path, ``state`` should be ``module`` 's state.
|
|
"""
|
|
# Force a lazy initialization to determine the FSDP root
|
|
_lazy_init(state, module)
|
|
assert state._is_root is not None # mypy
|
|
return state._is_root
|
|
|
|
|
|
@no_type_check
|
|
def _validate_and_get_hybrid_shard_state(root_module: nn.Module) -> None:
|
|
"""
|
|
Precondition: ``root_module`` is a ``FullyShardedDataParallel`` instance.
|
|
|
|
This checks that all instances using a hybrid sharding strategy have the
|
|
same intra- and inter-node process groups.
|
|
"""
|
|
intra_node_pgs: Set[dist.ProcessGroup] = set()
|
|
inter_node_pgs: Set[dist.ProcessGroup] = set()
|
|
for fsdp_state in traversal_utils._get_fsdp_states(root_module):
|
|
# TODO: Change this to handle's sharding strategy if we deprecate
|
|
# `ShardingStrategy` internally.
|
|
# https://github.com/pytorch/pytorch/issues/90857
|
|
if fsdp_state.sharding_strategy in HYBRID_SHARDING_STRATEGIES:
|
|
intra_node_pgs.add(fsdp_state.process_group)
|
|
inter_node_pgs.add(fsdp_state._inter_node_pg)
|
|
if len(intra_node_pgs) == 0 and len(inter_node_pgs) == 0:
|
|
# No instances use a hybrid sharding strategy
|
|
return
|
|
error_prefix = "At least one instance uses a hybrid sharding strategy but has no "
|
|
if len(intra_node_pgs) > 0 and len(inter_node_pgs) == 0:
|
|
raise AssertionError(error_prefix + "inter-node process group set")
|
|
if len(intra_node_pgs) == 0 and len(inter_node_pgs) > 0:
|
|
raise AssertionError(error_prefix + "intra-node process group set")
|
|
error_prefix = "Some instances use a hybrid sharding strategy, but "
|
|
if len(intra_node_pgs) != 1:
|
|
raise ValueError(error_prefix + "intra-node process groups do not match")
|
|
if len(inter_node_pgs) != 1:
|
|
raise ValueError(error_prefix + "inter-node process groups do not match")
|
|
|
|
|
|
@no_type_check
|
|
def _lazy_init(
|
|
state: _FSDPState,
|
|
root_module: nn.Module,
|
|
) -> _FSDPState:
|
|
"""
|
|
Performs initialization lazily, typically right before the first forward
|
|
pass. The laziness is needed to ensure that the parameter device/dtype and
|
|
the FSDP hierarchy have finalized. This method's actual logic only runs on
|
|
the root FSDP instance, which performs initialization for all non-root FSDP
|
|
instances to avoid partial initialization.
|
|
|
|
For the non-composable code path, ``state`` and ``root_module`` should be
|
|
the same, namely the FSDP instance itself.
|
|
"""
|
|
if state._is_root is not None:
|
|
return # no-op: already lazily initialized
|
|
if not state._device_handle.is_available():
|
|
# Allow the FSDP constructor to run even without CUDA but check this
|
|
# once we start real execution
|
|
raise RuntimeError("FSDP does not support CPU only execution")
|
|
# The following logic is only run on the root FSDP instance since it will
|
|
# set `_is_root=False` for the non-root instances
|
|
state._is_root = True
|
|
_assert_in_training_states(state, [TrainingState.IDLE])
|
|
_check_flat_params_on_expected_device(state, root_module)
|
|
state._all_fsdp_states = traversal_utils._get_fsdp_states(root_module)
|
|
_init_streams(state)
|
|
buffers, buffer_dtypes = _get_buffers_and_dtypes_for_computation(state, root_module)
|
|
_cast_buffers_to_dtype_and_device(buffers, buffer_dtypes, state.compute_device)
|
|
state._exec_order_data.init(state, root_module, state.process_group)
|
|
_share_state_and_init_handle_attrs(state, root_module)
|
|
return state
|
|
|
|
|
|
def _check_flat_params_on_expected_device(state: _FSDPState, module: nn.Module):
|
|
"""
|
|
Checks that all ``FlatParameter``s in ``module`` 's tree managed by
|
|
``state`` are on the expected device for *lazy initialization*.
|
|
"""
|
|
cpu_device = torch.device("cpu")
|
|
for handle in traversal_utils._get_fsdp_handles(module):
|
|
if (
|
|
not handle._offload_params
|
|
and handle.flat_param.device != state.compute_device
|
|
):
|
|
raise RuntimeError(
|
|
"An FSDP-managed module unexpectedly has parameters on "
|
|
f"{handle.flat_param.device}. Make sure to move the module to "
|
|
f"{state.compute_device} before training."
|
|
)
|
|
elif handle._offload_params and handle.flat_param.device != cpu_device:
|
|
raise RuntimeError(
|
|
"An FSDP-managed module with parameter CPU offloading enabled "
|
|
f"has parameters on {handle.flat_param.device}. Make sure to "
|
|
f"not move the module from CPU when offloading parameters."
|
|
)
|
|
|
|
|
|
@no_type_check
|
|
def _share_state_and_init_handle_attrs(
|
|
root_state: _FSDPState,
|
|
root_module: nn.Module,
|
|
) -> None:
|
|
"""
|
|
Shares data structure state from the ``root_state`` to all FSDP states in
|
|
``root_module`` 's module tree, and initializes handle attributes. These
|
|
are done together to require a single loop over the states.
|
|
"""
|
|
handle = root_state._handle
|
|
if handle:
|
|
handle.init_flat_param_attributes()
|
|
_validate_and_get_hybrid_shard_state(root_module)
|
|
attr_name_to_values: Dict[str, Set[Any]] = {}
|
|
for attr_name in HOMOGENEOUS_ATTR_NAMES:
|
|
attr_name_to_values[attr_name] = set()
|
|
root_state._all_handles = root_state._exec_order_data.all_handles # share reference
|
|
# Update _has_optim_in_backward for each handle.
|
|
for handle in root_state._all_handles:
|
|
flat_param = handle.flat_param
|
|
if hasattr(flat_param, "_in_backward_optimizers"):
|
|
raise RuntimeError(
|
|
"FSDP optimizer in backward only supported with use_orig_params=True!"
|
|
)
|
|
handle._has_optim_in_backward = flat_param._params is not None and any(
|
|
hasattr(param, "_in_backward_optimizers") for param in flat_param._params
|
|
)
|
|
if handle._has_optim_in_backward:
|
|
torch._C._log_api_usage_once("fsdp.optimizer_in_backward")
|
|
for fsdp_state in root_state._all_fsdp_states:
|
|
for attr_name in HOMOGENEOUS_ATTR_NAMES:
|
|
_p_assert(
|
|
hasattr(fsdp_state, attr_name),
|
|
f"FSDP state missing attribute {attr_name}",
|
|
)
|
|
attr_name_to_values[attr_name].add(getattr(fsdp_state, attr_name))
|
|
if fsdp_state is root_state:
|
|
continue
|
|
# Relax the assert for non-root FSDP instances in case the nested
|
|
# initialized module is wrapped again in FSDP later (e.g. after
|
|
# training to run inference)
|
|
_p_assert(
|
|
fsdp_state._is_root is None or not fsdp_state._is_root,
|
|
"Non-root FSDP instance's `_is_root` should not have been "
|
|
"set yet or should have been set to `False`",
|
|
)
|
|
fsdp_state._is_root = False
|
|
fsdp_state._unshard_stream = root_state._unshard_stream
|
|
fsdp_state._post_backward_stream = root_state._post_backward_stream
|
|
fsdp_state._pre_unshard_stream = root_state._pre_unshard_stream
|
|
fsdp_state._all_reduce_stream = root_state._all_reduce_stream
|
|
fsdp_state._default_stream = root_state._default_stream
|
|
fsdp_state._exec_order_data = root_state._exec_order_data
|
|
fsdp_state._free_event_queue = root_state._free_event_queue
|
|
if fsdp_state._fsdp_extension is not None:
|
|
fsdp_state._fsdp_extension.compute_stream = root_state._default_stream
|
|
handle = fsdp_state._handle
|
|
if handle:
|
|
handle.init_flat_param_attributes()
|
|
for attr_name, attr_values in attr_name_to_values.items():
|
|
if len(attr_values) != 1:
|
|
raise ValueError(
|
|
f"Expects one homogeneous value for {attr_name} but got {attr_values}"
|
|
)
|
|
|
|
|
|
@no_type_check
|
|
def _init_streams(
|
|
state: _FSDPState,
|
|
) -> None:
|
|
"""
|
|
Initializes CUDA streams for overlapping communication, computation, and
|
|
data transfers. The streams should be shared across FSDP instances.
|
|
"""
|
|
assert state._is_root
|
|
assert state._device_handle.is_available()
|
|
uses_hybrid_sharding = any(
|
|
fsdp_state.sharding_strategy in HYBRID_SHARDING_STRATEGIES
|
|
for fsdp_state in state._all_fsdp_states
|
|
)
|
|
# Prioritize all-gathers/reduce-scatters over async all-reduce for HSDP and
|
|
# preserve the default priority of 0 otherwise
|
|
high_priority = -1 if state.limit_all_gathers and uses_hybrid_sharding else 0
|
|
# Default stream for computation
|
|
state._default_stream = state._device_handle.current_stream()
|
|
if state._fsdp_extension is not None:
|
|
# set the compute stream to the FSDP extension
|
|
state._fsdp_extension.compute_stream = state._default_stream
|
|
|
|
# Stream for unshard logic, including allocating the all-gather destination
|
|
# tensors and the all-gathers themselves
|
|
state._unshard_stream = state._device_handle.Stream(priority=high_priority)
|
|
# Stream for overlapping gradient reduction with the backward pass gradient
|
|
# computation
|
|
state._post_backward_stream = state._device_handle.Stream(priority=high_priority)
|
|
# Stream for pre-unshard logic, namely allocations and writes for CPU
|
|
# offloading (H2D copy) and mixed precision (low precision cast)
|
|
state._pre_unshard_stream = state._device_handle.Stream(priority=high_priority)
|
|
# Stream to run HSDP's all-reduce as async (if using HSDP)
|
|
state._all_reduce_stream = (
|
|
state._device_handle.Stream() if uses_hybrid_sharding else state._default_stream
|
|
)
|
|
|
|
|
|
@no_type_check
|
|
def _unshard(
|
|
state: _FSDPState,
|
|
handle: FlatParamHandle,
|
|
unshard_stream: torch.Stream,
|
|
pre_unshard_stream: torch.Stream,
|
|
) -> None:
|
|
"""
|
|
Unshards the handles in ``handles``. If the handles are in
|
|
:meth:`summon_full_params` and are using mixed precision, then they are
|
|
forced to full precision.
|
|
|
|
Postcondition: handle's ``FlatParameter`` 's data is the padded
|
|
unsharded flat parameter on the compute device.
|
|
"""
|
|
if not handle:
|
|
return
|
|
with state._device_handle.stream(pre_unshard_stream):
|
|
ran_pre_unshard = handle.pre_unshard()
|
|
if ran_pre_unshard:
|
|
unshard_stream.wait_stream(pre_unshard_stream)
|
|
if state.limit_all_gathers:
|
|
event = state._free_event_queue.dequeue_if_needed()
|
|
if event:
|
|
with torch.profiler.record_function(
|
|
"FullyShardedDataParallel.rate_limiter"
|
|
):
|
|
event.synchronize()
|
|
with state._device_handle.stream(unshard_stream):
|
|
handle.unshard()
|
|
handle.post_unshard()
|
|
|
|
|
|
@no_type_check
|
|
def _reshard(
|
|
state: _FSDPState,
|
|
handle: FlatParamHandle,
|
|
free_unsharded_flat_param: bool,
|
|
):
|
|
"""
|
|
Reshards the handle. ``free_unsharded_flat_param`` indicates whether to
|
|
free the handle's padded unsharded flat parameter.
|
|
"""
|
|
handle.reshard(free_unsharded_flat_param)
|
|
if state.limit_all_gathers and free_unsharded_flat_param:
|
|
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
|
# We don't run a even queue for freeing under torch compile atm
|
|
# But maybe we need to? TODO(voz): Look into this
|
|
free_event = state._device_handle.Event()
|
|
free_event.record()
|
|
state._free_event_queue.enqueue(free_event)
|
|
handle.post_reshard()
|
|
# Flat parameter freed or not, we always have to "unshard" the parameter
|
|
# upon next access to get its shape correct.
|
|
handle._prefetched = False
|
|
|
|
|
|
def _unshard_grads(
|
|
handle: Optional[FlatParamHandle],
|
|
) -> None:
|
|
if handle:
|
|
handle.unshard_grad()
|
|
|
|
|
|
def _reshard_grads(
|
|
handle: Optional[FlatParamHandle],
|
|
) -> None:
|
|
if handle:
|
|
handle.reshard_grad()
|
|
|
|
|
|
@no_type_check
|
|
def _pre_forward(
|
|
state: _FSDPState,
|
|
handle: Optional[FlatParamHandle],
|
|
unshard_fn: Callable,
|
|
module: nn.Module,
|
|
args: Tuple[Any, ...],
|
|
kwargs: Dict[str, Any],
|
|
) -> Tuple[Tuple[Any, ...], Dict[str, Any]]:
|
|
"""
|
|
Runs the pre-forward logic. This includes an opportunity to unshard
|
|
currently sharded parameters such as those for the current forward and
|
|
registering post-backward hooks for these current parameters. This function
|
|
also converts forward ``args`` and ``kwargs`` to the given precision.
|
|
|
|
Args:
|
|
handles (List[FlatParamHandle]): Handles giving the parameters used in
|
|
the current forward.
|
|
unshard_fn (Optional[Callable]): A callable to unshard any currently
|
|
sharded parameters or ``None`` to not do any unsharding.
|
|
module (nn.Module): Module whose forward this method runs right before;
|
|
expected by the hook signature.
|
|
args (Tuple[Any, ...]): Module forward ``args``.
|
|
kwargs (Dict[str, Any]): Module forward ``kwargs``.
|
|
"""
|
|
with torch.profiler.record_function("FullyShardedDataParallel._pre_forward"):
|
|
# For `fully_shard` + `checkpoint`, skip pre-forward logic in the
|
|
# recomputed forward
|
|
if handle and handle._training_state == HandleTrainingState.BACKWARD_PRE:
|
|
# For both checkpoint implementations, we do not need to re-cast
|
|
# inputs here since they will be checkpointed in the low precision
|
|
# either by AC or normally by autograd as long as the AC region is
|
|
# nested within FSDP
|
|
return args, kwargs
|
|
state.training_state = TrainingState.FORWARD_BACKWARD
|
|
state._exec_order_data.record_pre_forward(handle, module.training)
|
|
if handle:
|
|
handle._training_state = HandleTrainingState.FORWARD
|
|
if unshard_fn is not None:
|
|
unshard_fn(state, handle)
|
|
# Register post-backward hooks to reshard the parameters and reduce-scatter
|
|
# their gradients. They must be re-registered every forward pass in case
|
|
# the `grad_fn` is mutated.
|
|
_register_post_backward_hook(state, handle)
|
|
# We have to reallocate the _cpu_grad if optimizer overlap
|
|
# set the grad to None in the backward pass.
|
|
if handle and handle._offload_params and handle.flat_param._cpu_grad is None:
|
|
handle.flat_param._cpu_grad = torch.zeros_like(
|
|
handle.flat_param._local_shard, device=torch.device("cpu")
|
|
).pin_memory()
|
|
|
|
should_cast_forward_inputs = (
|
|
state._handle and not state._handle._force_full_precision
|
|
)
|
|
|
|
if should_cast_forward_inputs and state.mixed_precision.cast_forward_inputs:
|
|
# Recursively convert args and kwargs to specified precision.
|
|
input_dtype: Optional[torch.dtype] = state.mixed_precision.param_dtype
|
|
args, kwargs = _cast_forward_inputs(input_dtype, *args, **kwargs)
|
|
_register_post_backward_reshard_only_hook(state, handle, args, kwargs)
|
|
return args, kwargs
|
|
|
|
|
|
@no_type_check
|
|
def _pre_forward_unshard(
|
|
state: _FSDPState,
|
|
handle: Optional[FlatParamHandle],
|
|
) -> None:
|
|
"""Unshards parameters in the pre-forward."""
|
|
if not handle:
|
|
return
|
|
# If the handles have been prefetched, then there is no need to call
|
|
# `_unshard()` again
|
|
if not handle._prefetched:
|
|
_unshard(state, handle, state._unshard_stream, state._pre_unshard_stream)
|
|
handle._needs_pre_forward_unshard = False
|
|
# Don't wait during trace
|
|
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
|
state._device_handle.current_stream().wait_stream(state._unshard_stream)
|
|
with torch.profiler.record_function(
|
|
"FullyShardedDataParallel._pre_forward_prefetch"
|
|
):
|
|
_prefetch_handle(state, handle, _PrefetchMode.FORWARD)
|
|
|
|
|
|
@no_type_check
|
|
def _post_forward(
|
|
state: _FSDPState,
|
|
handle: Optional[FlatParamHandle],
|
|
reshard_fn: Callable,
|
|
module: nn.Module,
|
|
input: Any,
|
|
output: Any,
|
|
) -> Any:
|
|
"""
|
|
Runs the post-forward logic. This includes an opportunity to reshard
|
|
currently unsharded parameters such as those used in the current forward
|
|
and registering pre-backward hooks on the forward outputs.
|
|
|
|
Args:
|
|
handles (List[FlatParamHandle]): Handles giving the parameters used in
|
|
the current forward.
|
|
reshard_fn (Optional[Callable]): A callable to reshard any currently
|
|
unsharded parameters (e.g. from the current forward) or ``None`` to
|
|
not do any resharding.
|
|
module (nn.Module): Module whose forward just ran, which should be a
|
|
fully sharded module (see [Note: Fully Sharded Module]); expected
|
|
by the hook signature.
|
|
input (Any): Unused; expected by the hook signature.
|
|
output (Any): Forward pass output; pre-backward hooks are registered on
|
|
the tensors that require gradients in this output.
|
|
|
|
Postcondition: Each ``FlatParameter`` 's data points to the sharded flat
|
|
parameter.
|
|
"""
|
|
with torch.profiler.record_function("FullyShardedDataParallel._post_forward"):
|
|
# For `fully_shard` + `checkpoint`, skip post-forward logic in the
|
|
# recomputed forward
|
|
if handle and handle._training_state == HandleTrainingState.BACKWARD_PRE:
|
|
return output
|
|
|
|
state._exec_order_data.record_post_forward(handle)
|
|
if reshard_fn is not None:
|
|
reshard_fn(state, handle)
|
|
# Register pre-backward hooks to unshard the flat parameters for the
|
|
# gradient computation (if needed)
|
|
output = _register_pre_backward_hooks(state, module, output, handle)
|
|
state.training_state = TrainingState.IDLE
|
|
if handle:
|
|
handle._training_state = HandleTrainingState.IDLE
|
|
return output
|
|
|
|
|
|
@no_type_check
|
|
def _post_forward_reshard(
|
|
state: _FSDPState,
|
|
handle: FlatParamHandle,
|
|
) -> None:
|
|
"""Reshards parameters in the post-forward."""
|
|
if not handle:
|
|
return
|
|
# Do not free the root's parameters in the post-forward for `FULL_SHARD`
|
|
# with the intention that they are immediately used for backward
|
|
# computation (though this may not be true)
|
|
free_unsharded_flat_param = (
|
|
not state._is_root
|
|
and handle._sharding_strategy in RESHARD_AFTER_FORWARD_HANDLE_STRATEGIES
|
|
)
|
|
_reshard(state, handle, free_unsharded_flat_param)
|
|
|
|
|
|
@no_type_check
|
|
def _root_pre_forward(
|
|
state: _FSDPState,
|
|
module: nn.Module,
|
|
args,
|
|
kwargs,
|
|
) -> None:
|
|
"""
|
|
Runs pre-forward logic specific to the root FSDP instance, which should run
|
|
before any individual module's pre-forward. This starts with an attempt at
|
|
lazy initialization (which only runs non-vacuously once). Otherwise, if
|
|
this is called on a non-root FSDP instance, then it returns directly.
|
|
|
|
Args:
|
|
module (nn.Module): Module for which this logic tries to run. It may or
|
|
may not be the root. If not, then this method does not do anything.
|
|
"""
|
|
with torch.profiler.record_function("FullyShardedDataParallel._root_pre_forward"):
|
|
_lazy_init(state, module)
|
|
_p_assert(state._is_root is not None, "Expects a root FSDP to have been set")
|
|
if not state._is_root:
|
|
# Always cast forward inputs in the root of this local FSDP unit for mixed
|
|
# precision, as this is where mixed precision could be configed.
|
|
# This is more useful for auto wrapping that is recommended in composable path.
|
|
# For manual wrapping, cast forward inputs on each local FSDP unit root will
|
|
# increase some overhead, so not turned on for model wrapper path right now where
|
|
# manual wrapping is more broadly used.
|
|
if _is_composable(state):
|
|
return _root_cast_forward_input(state, module, args, kwargs)
|
|
return args, kwargs
|
|
|
|
# We cast buffers back to full precision if we're forcing full precision. Disjointly, we check if buffers
|
|
# are in full precision and if we should cast them back to lower precision, which happens when
|
|
# exiting eval() mode.
|
|
handle = state._handle
|
|
if handle:
|
|
should_cast_buffers_to_full_prec = handle._force_full_precision
|
|
else:
|
|
should_cast_buffers_to_full_prec = True
|
|
|
|
if should_cast_buffers_to_full_prec:
|
|
_cast_buffers_to_dtype_and_device(
|
|
buffers=dict(module.named_buffers()).values(),
|
|
buffer_dtypes=list(state._buffer_name_to_orig_dtype.values()),
|
|
device=state.compute_device,
|
|
)
|
|
# This flag is only set when we cast buffers to full precision, to avoid the
|
|
# CPU overhead that can stem from retrieving all buffers and their types in the
|
|
# following else branch.
|
|
state._needs_buffer_dtype_restore_check = True
|
|
elif getattr(state, "_needs_buffer_dtype_restore_check", False):
|
|
# Check if buffers are in full precision and we need to cast them
|
|
# back down.
|
|
(
|
|
buffers,
|
|
buffer_dtypes_for_computation,
|
|
) = _get_buffers_and_dtypes_for_computation(state, module)
|
|
if len(buffers) > 0 and len(buffer_dtypes_for_computation) > 0:
|
|
if any(
|
|
buffer.dtype != buffer_dtype_for_computation
|
|
for buffer, buffer_dtype_for_computation in zip(
|
|
buffers, buffer_dtypes_for_computation
|
|
)
|
|
):
|
|
# Assume we have to cast everything if there is one mismatch
|
|
_cast_buffers_to_dtype_and_device(
|
|
buffers, buffer_dtypes_for_computation, state.compute_device
|
|
)
|
|
# We don't have to check this again until we cast buffers to full precision again.
|
|
state._needs_buffer_dtype_restore_check = False
|
|
|
|
if state.forward_prefetch:
|
|
handles = []
|
|
for fsdp_state in state._all_fsdp_states:
|
|
if fsdp_state._handle:
|
|
handles.append(fsdp_state._handle)
|
|
for handle in handles:
|
|
handle._needs_pre_forward_unshard = True
|
|
handle._prefetched = False
|
|
_wait_for_computation_stream(
|
|
state._device_handle.current_stream(),
|
|
state._unshard_stream,
|
|
state._pre_unshard_stream,
|
|
)
|
|
_reset_flat_param_grad_info_if_needed(state._all_handles)
|
|
|
|
# Prepares the forward inputs by moving them to ``compute_device``
|
|
# TODO: Do not use the side stream for tensor copies for now; investigate
|
|
# the perf with/without it.
|
|
with torch.profiler.record_function("FullyShardedDataParallel._to_kwargs"):
|
|
args_tuple, kwargs_tuple = _to_kwargs(
|
|
args, kwargs, state.compute_device, False
|
|
)
|
|
args = args_tuple[0]
|
|
kwargs = kwargs_tuple[0]
|
|
|
|
return _root_cast_forward_input(state, module, args, kwargs)
|
|
|
|
|
|
@no_type_check
|
|
def _root_cast_forward_input(
|
|
state: _FSDPState, module: torch.nn.Module, args, kwargs
|
|
) -> Tuple[Any, Any]:
|
|
if state._handle:
|
|
force_full_precision = not state._handle._force_full_precision
|
|
else:
|
|
force_full_precision = True
|
|
|
|
should_cast_forward_inputs = (
|
|
(module.training or not state._use_full_prec_in_eval) and force_full_precision
|
|
) and state.mixed_precision.cast_root_forward_inputs
|
|
|
|
if should_cast_forward_inputs:
|
|
input_dtype: Optional[torch.dtype] = state.mixed_precision.param_dtype
|
|
args, kwargs = _cast_forward_inputs(input_dtype, *args, **kwargs)
|
|
|
|
return args, kwargs
|
|
|
|
|
|
@no_type_check
|
|
def _pre_backward_hook(
|
|
state: _FSDPState,
|
|
module: nn.Module,
|
|
handle: FlatParamHandle,
|
|
grad,
|
|
*unused: Any,
|
|
) -> Any:
|
|
"""
|
|
Prepares ``_handle`` 's ``FlatParameter`` s for gradient computation.
|
|
|
|
Args:
|
|
module (nn.Module): Fully sharded module (see [Note: Fully Sharded
|
|
Module]).
|
|
"""
|
|
# Only run the pre-backward hook once per group of handles involved in the
|
|
# same module forward computation
|
|
if (
|
|
handle
|
|
and hasattr(handle, "_ran_pre_backward_hook")
|
|
and handle._ran_pre_backward_hook
|
|
):
|
|
log.debug("%s %s", id(state), "Not Running pre backward! Already Ran!")
|
|
return grad
|
|
|
|
with torch.profiler.record_function("FullyShardedDataParallel._pre_backward_hook"):
|
|
# Queue the post-backward callback once for the root FSDP instance to
|
|
# attach it to the outermost backward graph task so that it is called
|
|
# after all backward calls complete
|
|
if state._is_root and not state._post_backward_callback_queued:
|
|
_register_post_backward_final_callback(state, module)
|
|
_reset_flat_param_grad_info_if_needed(state._all_handles)
|
|
elif handle:
|
|
allowed_states = [TrainingState.IDLE]
|
|
if _is_composable(state):
|
|
allowed_states.append(TrainingState.FORWARD_BACKWARD)
|
|
_assert_in_training_states(state, allowed_states)
|
|
state.training_state = TrainingState.FORWARD_BACKWARD
|
|
# Queueing the post-backward callback is the only logic that is not
|
|
# per-handle in the pre-backward hook, so we can return early here if
|
|
# there are no handles.
|
|
if not handle:
|
|
return grad
|
|
handle._training_state = HandleTrainingState.BACKWARD_PRE
|
|
|
|
if handle._needs_pre_backward_unshard:
|
|
# If the handles have been prefetched, then there is no need to
|
|
# call `_unshard()` again
|
|
if not handle._prefetched:
|
|
_unshard(
|
|
state,
|
|
handle,
|
|
state._unshard_stream,
|
|
state._pre_unshard_stream,
|
|
)
|
|
# Don't wait during trace
|
|
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
|
state._device_handle.current_stream().wait_stream(state._unshard_stream)
|
|
|
|
# Set this to `False` to ensure that a mistargeted prefetch does not
|
|
# actually unshard these handles
|
|
handle._needs_pre_backward_unshard = False
|
|
with torch.profiler.record_function(
|
|
"FullyShardedDataParallel._pre_backward_prefetch"
|
|
):
|
|
_prefetch_handle(state, handle, _PrefetchMode.BACKWARD)
|
|
handle.prepare_gradient_for_backward()
|
|
handle._ran_pre_backward_hook = True
|
|
return grad
|
|
|
|
|
|
@no_type_check
|
|
@torch.no_grad()
|
|
def _post_backward_hook(
|
|
state: _FSDPState,
|
|
handle: FlatParamHandle,
|
|
flat_param,
|
|
*unused: Any,
|
|
):
|
|
"""
|
|
Reduce-scatters the gradient of ``handle`` 's ``FlatParameter``.
|
|
|
|
Precondition: The ``FlatParameter`` 's ``.grad`` attribute contains the
|
|
unsharded gradient for the local batch.
|
|
|
|
Postcondition:
|
|
- If using ``NO_SHARD``, then the ``.grad`` attribute is the reduced
|
|
unsharded gradient.
|
|
- Otherwise, the ``_saved_grad_shard`` attribute is the reduced sharded
|
|
gradient (accumulating with any existing gradient).
|
|
"""
|
|
_log_post_backward_hook(state, handle, log)
|
|
flat_param = handle.flat_param
|
|
flat_param._post_backward_called = True
|
|
with torch.autograd.profiler.record_function(
|
|
"FullyShardedDataParallel._post_backward_hook"
|
|
):
|
|
_assert_in_training_states(state, [TrainingState.FORWARD_BACKWARD])
|
|
# For multiple applications of reentrant AC across submodules sharing
|
|
# the same `FlatParameter`, the post-backward hook may run multiple
|
|
# times in one backward, in which case we permit the state to already
|
|
# be in `BACKWARD_POST`.
|
|
_p_assert(
|
|
handle._training_state
|
|
in (HandleTrainingState.BACKWARD_PRE, HandleTrainingState.BACKWARD_POST),
|
|
f"Expects `BACKWARD_PRE` or `BACKWARD_POST` state but got {handle._training_state}",
|
|
)
|
|
handle._training_state = HandleTrainingState.BACKWARD_POST
|
|
|
|
if flat_param.grad is None:
|
|
return
|
|
if flat_param.grad.requires_grad:
|
|
raise RuntimeError("FSDP does not support gradients of gradients")
|
|
|
|
_post_backward_reshard(state, handle)
|
|
if not state._sync_gradients:
|
|
if handle._use_orig_params:
|
|
handle._use_unsharded_grad_views()
|
|
return
|
|
|
|
# Wait for all ops in the current stream (e.g. gradient computation) to
|
|
# finish before reduce-scattering the gradient
|
|
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
|
state._post_backward_stream.wait_stream(
|
|
state._device_handle.current_stream()
|
|
)
|
|
|
|
with state._device_handle.stream(state._post_backward_stream):
|
|
autograd_computed_grad = flat_param.grad.data
|
|
if (
|
|
not _low_precision_hook_enabled(state)
|
|
and flat_param.grad.dtype != handle._reduce_dtype
|
|
# If we are forcing full precision but communicating grads
|
|
# (i.e. model.eval() + full precision in eval was configured), don't downcast gradient.
|
|
and not handle._force_full_precision
|
|
):
|
|
flat_param.grad.data = flat_param.grad.to(handle._reduce_dtype)
|
|
if handle.uses_sharded_strategy:
|
|
_reduce_grad(state, handle)
|
|
else:
|
|
_reduce_grad_no_shard(state, handle)
|
|
# Since the unsharded gradient is produced in the computation
|
|
# stream and consumed in the post-backward stream, inform the
|
|
# caching allocator (before it goes out of scope)
|
|
_no_dispatch_record_stream(
|
|
autograd_computed_grad, state._post_backward_stream
|
|
)
|
|
|
|
|
|
def _post_backward_reshard(
|
|
state: _FSDPState,
|
|
handle: FlatParamHandle,
|
|
*unused: Any,
|
|
) -> None:
|
|
free_unsharded_flat_param = _should_free_in_backward(state, handle)
|
|
_reshard(state, handle, free_unsharded_flat_param)
|
|
|
|
# TODO: Post-backward prefetching does not support the multiple handles
|
|
# per module case since the post-backward hook runs per handle, not per
|
|
# group of handles.
|
|
with torch.profiler.record_function(
|
|
"FullyShardedDataParallel._post_backward_prefetch"
|
|
):
|
|
_prefetch_handle(state, handle, _PrefetchMode.BACKWARD)
|
|
|
|
|
|
@no_type_check
|
|
def _should_free_in_backward(
|
|
state: _FSDPState,
|
|
handle: FlatParamHandle,
|
|
) -> bool:
|
|
"""
|
|
Returns whether FSDP should free the unsharded flat parameter in the
|
|
post-backward or not.
|
|
"""
|
|
if not handle.uses_sharded_strategy:
|
|
return False
|
|
# If not syncing gradients, then we do not free for strategies that do not
|
|
# reshard after forward as a *heuristic* to tradeoff higher memory for
|
|
# higher throughput.
|
|
return (
|
|
state._sync_gradients
|
|
or handle._sharding_strategy in RESHARD_AFTER_FORWARD_HANDLE_STRATEGIES
|
|
)
|
|
|
|
|
|
@no_type_check
|
|
def _reduce_grad(state: _FSDPState, handle: FlatParamHandle) -> None:
|
|
"""
|
|
For sharded strategies, this runs gradient reduction, sharded gradient
|
|
accumulation if needed, and the post-reduction callback.
|
|
"""
|
|
flat_param = handle.flat_param
|
|
uses_hybrid_sharded_strategy = handle._sharding_strategy in (
|
|
HandleShardingStrategy.HYBRID_SHARD,
|
|
HandleShardingStrategy._HYBRID_SHARD_ZERO2,
|
|
)
|
|
# We clear `.grad` to permit multiple backwards. This avoids a race where
|
|
# the second backward pass computation precedes ahead of the first backward
|
|
# pass reduction, which is possible since the reduction is issued in a
|
|
# separate stream and is async and would result in reducing the wrong
|
|
# gradient.
|
|
unsharded_grad = flat_param.grad.data
|
|
flat_param.grad = None
|
|
padded_unsharded_grad, new_sharded_grad = _get_reduce_scatter_tensors(
|
|
state, unsharded_grad
|
|
)
|
|
if state._comm_hook is None: # default path
|
|
_div_if_needed(padded_unsharded_grad, state._gradient_predivide_factor)
|
|
pg = (
|
|
handle._fake_process_group
|
|
if handle._use_fake_reduce
|
|
else state.process_group
|
|
)
|
|
dist.reduce_scatter_tensor(
|
|
new_sharded_grad,
|
|
padded_unsharded_grad,
|
|
group=pg,
|
|
)
|
|
if uses_hybrid_sharded_strategy:
|
|
# Don't wait during trace
|
|
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
|
state._all_reduce_stream.wait_stream(state._post_backward_stream)
|
|
with state._device_handle.stream(state._all_reduce_stream):
|
|
# Since the new sharded gradient is produced in the post-
|
|
# backward stream and consumed in the all-reduce stream,
|
|
# inform the caching allocator
|
|
_no_dispatch_record_stream(new_sharded_grad, state._all_reduce_stream)
|
|
dist.all_reduce(new_sharded_grad, group=state._inter_node_pg)
|
|
_div_if_needed(new_sharded_grad, state._gradient_postdivide_factor)
|
|
grad_to_offload = _accumulate_sharded_grad(
|
|
state, handle, new_sharded_grad
|
|
)
|
|
_post_reduce_grad_callback(state, handle, grad_to_offload)
|
|
return
|
|
_div_if_needed(new_sharded_grad, state._gradient_postdivide_factor)
|
|
else:
|
|
state._comm_hook(
|
|
state._comm_hook_state, padded_unsharded_grad, new_sharded_grad
|
|
)
|
|
# NOTE: HSDP variants do not support communication hook.
|
|
grad_to_offload = _accumulate_sharded_grad(state, handle, new_sharded_grad)
|
|
_post_reduce_grad_callback(state, handle, grad_to_offload)
|
|
|
|
|
|
@no_type_check
|
|
def _get_reduce_scatter_tensors(
|
|
state: _FSDPState, unsharded_grad: torch.Tensor
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Returns the input and output tensors to reduce-scatter, respectively.
|
|
"""
|
|
chunks = list(unsharded_grad.chunk(state.world_size))
|
|
numel_to_pad = state.world_size * chunks[0].numel() - unsharded_grad.numel()
|
|
padded_unsharded_grad = (
|
|
F.pad(unsharded_grad, [0, numel_to_pad]) if numel_to_pad > 0 else unsharded_grad
|
|
)
|
|
new_sharded_grad = torch.empty_like(chunks[0]) # padded
|
|
return padded_unsharded_grad, new_sharded_grad
|
|
|
|
|
|
@no_type_check
|
|
def _accumulate_sharded_grad(
|
|
state: _FSDPState,
|
|
handle: FlatParamHandle,
|
|
sharded_grad: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Accumulates the reduce-scattered sharded gradient with any existing sharded
|
|
gradient if needed, returning the gradient to offload (if CPU offloading is
|
|
enabled).
|
|
"""
|
|
flat_param = handle.flat_param
|
|
_cast_grad_to_param_dtype(state, sharded_grad, flat_param)
|
|
# Save the sharded gradient in `_saved_grad_shard` to support gradient
|
|
# accumulation -- for multiple backwards, the gradient reductions may
|
|
# happen in arbitrary order
|
|
accumulate_grad = hasattr(flat_param, "_saved_grad_shard")
|
|
if accumulate_grad:
|
|
_check_grad_to_accumulate(sharded_grad, flat_param._saved_grad_shard)
|
|
flat_param._saved_grad_shard += sharded_grad
|
|
else:
|
|
flat_param._saved_grad_shard = sharded_grad
|
|
grad_to_offload = flat_param._saved_grad_shard
|
|
return grad_to_offload
|
|
|
|
|
|
@no_type_check
|
|
def _reduce_grad_no_shard(state: _FSDPState, handle: FlatParamHandle) -> None:
|
|
"""
|
|
For no-shard, this runs gradient reduction (which directly covers any
|
|
gradient accumulation implicitly) and the post-reduction callback.
|
|
"""
|
|
flat_param = handle.flat_param
|
|
if state._comm_hook is None: # default path
|
|
_div_if_needed(flat_param.grad, state._gradient_predivide_factor)
|
|
dist.all_reduce(flat_param.grad, group=state.process_group)
|
|
_div_if_needed(flat_param.grad, state._gradient_postdivide_factor)
|
|
else:
|
|
state._comm_hook(state._comm_hook_state, flat_param.grad)
|
|
# For `NO_SHARD`, we can keep the low precision gradients by simply
|
|
# omitting the cast altogether
|
|
if not handle._keep_low_precision_grads:
|
|
_cast_grad_to_param_dtype(state, flat_param.grad, flat_param)
|
|
grad_to_offload = flat_param.grad.data
|
|
_post_reduce_grad_callback(state, handle, grad_to_offload)
|
|
|
|
|
|
@no_type_check
|
|
def _post_reduce_grad_callback(
|
|
state: _FSDPState,
|
|
handle: FlatParamHandle,
|
|
# Additional arguments needed for the callback logic
|
|
grad_to_offload: torch.Tensor,
|
|
):
|
|
"""
|
|
This callback captures any logic to run after the gradient reduction
|
|
finishes. Currently, this offloads the gradient to CPU if CPU offloading is
|
|
enabled and uses sharded gradient views if ``use_orig_params=True``.
|
|
"""
|
|
_offload_grad(state, handle, grad_to_offload)
|
|
_post_backward_use_sharded_grad_views(handle)
|
|
|
|
|
|
@no_type_check
|
|
def _offload_grad(
|
|
state: _FSDPState,
|
|
handle: FlatParamHandle,
|
|
grad_to_offload: torch.Tensor,
|
|
):
|
|
if not handle._offload_params:
|
|
return
|
|
# Offload the gradient to CPU to ensure parameters and gradients are on the
|
|
# same device as required by the optimizer
|
|
# TODO: Investigate why `NO_SHARD` breaks correctness when using
|
|
# `non_blocking=True` here.
|
|
# TODO (rohan-varma): When CPU offload and optimizer overlap,
|
|
# non_blocking=True won't work since the copy may have not finished before
|
|
# the optimizer step executes on CPU. If we want to use non-blocking=True
|
|
# here, we'll have to synchronize before using result on CPU.
|
|
non_blocking = handle.uses_sharded_strategy and not handle._has_optim_in_backward
|
|
handle.flat_param._cpu_grad.copy_(
|
|
grad_to_offload.detach(), non_blocking=non_blocking
|
|
) # synchronized in the post-backward callback
|
|
# Since the gradient being offloaded may have been produced in the
|
|
# computation stream and is being consumed here in the post-backward
|
|
# stream, inform the caching allocator
|
|
_no_dispatch_record_stream(grad_to_offload.data, state._post_backward_stream)
|
|
|
|
|
|
@no_type_check
|
|
def _post_backward_use_sharded_grad_views(handle: FlatParamHandle):
|
|
if not handle._use_orig_params:
|
|
return
|
|
# Since the handle's `FlatParameter` completed its gradient computation, we
|
|
# should reset the gradient noneness mask
|
|
handle._reset_is_grad_none()
|
|
# Delay using sharded gradient views until after the reduce-scatter instead
|
|
# of immediately after resharding
|
|
handle._use_sharded_grad_views()
|
|
if handle._has_optim_in_backward:
|
|
handle.prepare_gradient_for_optim()
|
|
for orig_param in handle.flat_param._params:
|
|
# Check for `None` gradient to filter parameters not in the rank
|
|
if orig_param.grad is not None and hasattr(
|
|
orig_param, "_in_backward_optimizers"
|
|
):
|
|
# TODO (rohan-varma): For CPU offload, this unfortunately
|
|
# operates on CPU because the parameters and gradients have
|
|
# already been offloaded. We should run this on GPU after
|
|
# refactoring.
|
|
for optim in orig_param._in_backward_optimizers:
|
|
optim.step()
|
|
|
|
optim.zero_grad(set_to_none=True)
|
|
handle._reset_flat_param_grad_info_if_needed()
|
|
if handle._offload_params:
|
|
handle.flat_param._cpu_grad = None
|
|
|
|
|
|
def _div_if_needed(tensor: torch.Tensor, div_factor: float) -> None:
|
|
if div_factor > 1:
|
|
tensor.div_(div_factor)
|
|
|
|
|
|
@no_type_check
|
|
def _cast_grad_to_param_dtype(
|
|
state: _FSDPState,
|
|
sharded_grad: torch.Tensor,
|
|
param: FlatParameter,
|
|
):
|
|
"""
|
|
Casts ``sharded_grad`` back to the full parameter dtype so that the
|
|
optimizer step runs with that dtype. This performs an actual cast if
|
|
1. parameters were in reduced precision during the forward since then
|
|
gradients would be in that reduced precision, or
|
|
2. parameters were not in reduced precision but gradients were in
|
|
reduced precision for communication.
|
|
However, if a low precision communication hook is registered, then this
|
|
dtype cast happens in the hook instead.
|
|
"""
|
|
_assert_in_training_states(state, [TrainingState.FORWARD_BACKWARD])
|
|
if not _low_precision_hook_enabled(state) and sharded_grad.dtype != param.dtype:
|
|
low_prec_grad_data = sharded_grad.data
|
|
sharded_grad.data = sharded_grad.data.to(dtype=param.dtype)
|
|
# Since for `NO_SHARD`, the gradient is produced in the computation
|
|
# stream and consumed here in the post-backward stream, inform the
|
|
# caching allocator; for the sharded strategies, the gradient is
|
|
# produced in the post-backward stream, so this `record_stream()`
|
|
# should be a no-op
|
|
_no_dispatch_record_stream(
|
|
low_prec_grad_data, state._device_handle.current_stream()
|
|
)
|
|
|
|
|
|
def _check_grad_to_accumulate(
|
|
new_sharded_grad: torch.Tensor,
|
|
accumulated_grad: torch.Tensor,
|
|
) -> None:
|
|
_p_assert(
|
|
accumulated_grad.shape == new_sharded_grad.shape,
|
|
"Shape mismatch when accumulating gradients: "
|
|
f"existing gradient shape={accumulated_grad.shape} "
|
|
f"new gradient shape={new_sharded_grad.shape}",
|
|
)
|
|
_p_assert(
|
|
accumulated_grad.device == new_sharded_grad.device,
|
|
"Device mismatch when accumulating gradients: "
|
|
f"existing gradient device={accumulated_grad.device} "
|
|
f"new gradient device={new_sharded_grad.device}",
|
|
)
|
|
|
|
|
|
@no_type_check
|
|
def _low_precision_hook_enabled(state: _FSDPState) -> bool:
|
|
return state._comm_hook in LOW_PRECISION_HOOKS
|
|
|
|
|
|
@no_type_check
|
|
@torch.no_grad()
|
|
def _post_backward_final_callback(
|
|
state: _FSDPState,
|
|
module: nn.Module,
|
|
):
|
|
"""
|
|
This waits for the post-backward to finish and performs some final cleanup.
|
|
This runs at the end of the entire backward pass and should only be called
|
|
on the root FSDP instance.
|
|
"""
|
|
_p_assert(
|
|
state._is_root,
|
|
"The post-backward callback should only be called on the root FSDP instance",
|
|
)
|
|
root_state = state
|
|
|
|
if root_state._sync_gradients:
|
|
current_stream = state._device_handle.current_stream()
|
|
# TODO (rohan-varma): this also waits for the overlapped optimizer step to finish
|
|
# since it currently runs in the post-backward stream. That can be
|
|
# pushed to the next forward if run in a different stream
|
|
current_stream.wait_stream(root_state._post_backward_stream)
|
|
if root_state._all_reduce_stream is not current_stream: # uses HSDP
|
|
current_stream.wait_stream(root_state._all_reduce_stream)
|
|
if root_state.cpu_offload.offload_params:
|
|
# Wait for non-blocking GPU -> CPU sharded gradient copies from the
|
|
# post-backward hooks to finish explicitly since CPU gradients do
|
|
# not automatically synchronize with the GPU
|
|
state._device_handle.current_stream().synchronize()
|
|
root_state._exec_order_data.next_iter()
|
|
|
|
for fsdp_state in state._all_fsdp_states:
|
|
_catch_all_reshard(fsdp_state)
|
|
_finalize_params(fsdp_state)
|
|
fsdp_state.training_state = TrainingState.IDLE
|
|
handle = fsdp_state._handle
|
|
if handle:
|
|
handle._ran_pre_backward_hook = False
|
|
handle._needs_pre_backward_unshard = False
|
|
handle._post_forward_index = None
|
|
handle._training_state = HandleTrainingState.IDLE
|
|
handle._prefetched = False
|
|
# Reset for cases like one forward and multiple backwards
|
|
root_state._post_backward_callback_queued = False
|
|
|
|
|
|
@no_type_check
|
|
def _catch_all_reshard(
|
|
state: _FSDPState,
|
|
) -> None:
|
|
"""
|
|
Reshards the parameters that may not have been resharded in the
|
|
post-backward hook. This can happen when a module's output is used in the
|
|
forward pass, meaning that its pre-backward hook runs (unsharding the
|
|
parameter), but the post-backward hook does not run because the output was
|
|
not jused in the loss computation corresponding to this backward pass.
|
|
"""
|
|
# Wrap with a try-except to provide a more informative traceback if an
|
|
# error is raised
|
|
try:
|
|
if state._handle:
|
|
# TODO: This already-resharded check is brittle:
|
|
# https://github.com/pytorch/pytorch/issues/83956
|
|
already_resharded = (
|
|
state._handle.flat_param.data_ptr()
|
|
== state._handle.flat_param._local_shard.data_ptr()
|
|
# If FSDP skipped using sharded views, then the flat parameter
|
|
# still points to the sharded data, so we need to reshard to
|
|
# use sharded views
|
|
and not state._handle._skipped_use_sharded_views
|
|
)
|
|
if already_resharded:
|
|
return
|
|
free_unsharded_flat_param = _should_free_in_backward(state, state._handle)
|
|
_reshard(state, state._handle, free_unsharded_flat_param)
|
|
except Exception as e:
|
|
_p_assert(
|
|
False,
|
|
f"Got exception in the catch-all reshard for {state}: {str(e)}",
|
|
raise_assertion_error=False,
|
|
)
|
|
raise e
|
|
|
|
|
|
@no_type_check
|
|
def _finalize_params(
|
|
state: _FSDPState,
|
|
) -> None:
|
|
"""Finalizes the parameters before the next iteration."""
|
|
handle = state._handle
|
|
if not handle:
|
|
return
|
|
flat_param = handle.flat_param
|
|
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
|
if hasattr(flat_param, "_post_backward_hook_handle"):
|
|
pbhs_handle = flat_param._post_backward_hook_handle
|
|
pbhs_handle.remove()
|
|
del flat_param._post_backward_hook_handle
|
|
else:
|
|
if hasattr(flat_param, "_post_backward_hook_state"):
|
|
post_backward_hook_state_len = len(flat_param._post_backward_hook_state)
|
|
expected_post_backward_hook_state_len = int(flat_param.requires_grad) + 1
|
|
_p_assert(
|
|
post_backward_hook_state_len == expected_post_backward_hook_state_len,
|
|
f"Invalid: ``_post_backward_hook_state``: {flat_param._post_backward_hook_state}",
|
|
)
|
|
flat_param._post_backward_hook_state[-1].remove()
|
|
delattr(flat_param, "_post_backward_hook_state")
|
|
if flat_param.requires_grad:
|
|
if not state._sync_gradients:
|
|
# Preserve the gradient accumulation state if not synchronizing
|
|
# gradients: `.grad` remains the unsharded gradient from prior
|
|
# `no_sync()` iterations, and `_saved_grad_shard` remains the
|
|
# sharded gradient from the last synchronized iteration
|
|
return
|
|
if not handle._has_optim_in_backward:
|
|
handle.prepare_gradient_for_optim()
|
|
_p_assert(
|
|
hasattr(flat_param, "_post_backward_called"),
|
|
"Expects `_post_backward_called` to be set on the `FlatParameter`",
|
|
)
|
|
flat_param._post_backward_called = False
|
|
|
|
|
|
@no_type_check
|
|
def _prefetch_handle(
|
|
state: _FSDPState,
|
|
current_handle: Optional[FlatParamHandle],
|
|
prefetch_mode: _PrefetchMode,
|
|
) -> None:
|
|
"""
|
|
Prefetches the next handles if needed (without synchronization). An empty
|
|
handles key cannot prefetch.
|
|
"""
|
|
if not current_handle:
|
|
return
|
|
handle = _get_handle_to_prefetch(state, current_handle)
|
|
if not handle:
|
|
return
|
|
# Temporarily emulate the training state while calling `_unshard` to
|
|
# ensure the correct `as_params` for `_use_unsharded_views()`
|
|
prev_training_state = handle._training_state
|
|
if prefetch_mode == _PrefetchMode.BACKWARD:
|
|
handle._training_state = HandleTrainingState.BACKWARD_PRE
|
|
elif prefetch_mode == _PrefetchMode.FORWARD:
|
|
handle._training_state = HandleTrainingState.FORWARD
|
|
else:
|
|
raise ValueError(f"Invalid prefetch mode on rank {state.rank}: {prefetch_mode}")
|
|
# Prefetch the next set of handles without synchronizing to allow
|
|
# the sync to happen as late as possible to maximize overlap
|
|
_unshard(state, handle, state._unshard_stream, state._pre_unshard_stream)
|
|
handle._training_state = prev_training_state
|
|
handle._prefetched = True
|
|
|
|
|
|
@no_type_check
|
|
def _get_handle_to_prefetch(
|
|
state: _FSDPState,
|
|
current_handle: FlatParamHandle,
|
|
) -> FlatParamHandle:
|
|
"""
|
|
Returns a :class:`list` of the handles keys to prefetch for the next
|
|
module(s), where ``current_handle`` represents the current module.
|
|
|
|
"Prefetching" refers to running the unshard logic early (without
|
|
synchronization), and the "next" modules depend on the recorded execution
|
|
order and the current training state.
|
|
"""
|
|
training_state = _get_training_state(current_handle)
|
|
valid_training_states = (
|
|
HandleTrainingState.BACKWARD_PRE,
|
|
HandleTrainingState.BACKWARD_POST,
|
|
HandleTrainingState.FORWARD,
|
|
)
|
|
_p_assert(
|
|
training_state in valid_training_states,
|
|
f"Prefetching is only supported in {valid_training_states} but "
|
|
f"currently in {training_state}",
|
|
)
|
|
eod = state._exec_order_data
|
|
target_handle: Optional[FlatParamHandle] = None
|
|
if (
|
|
training_state == HandleTrainingState.BACKWARD_PRE
|
|
and state.backward_prefetch == BackwardPrefetch.BACKWARD_PRE
|
|
) or (
|
|
training_state == HandleTrainingState.BACKWARD_POST
|
|
and state.backward_prefetch == BackwardPrefetch.BACKWARD_POST
|
|
):
|
|
target_handle_candidate = eod.get_handle_to_backward_prefetch(current_handle)
|
|
if (
|
|
target_handle_candidate
|
|
and target_handle_candidate._needs_pre_backward_unshard
|
|
and not target_handle_candidate._prefetched
|
|
):
|
|
target_handle = target_handle_candidate
|
|
else:
|
|
target_handle = None
|
|
elif training_state == HandleTrainingState.FORWARD and state.forward_prefetch:
|
|
target_handle_candidate = eod.get_handle_to_forward_prefetch(current_handle)
|
|
if (
|
|
target_handle_candidate
|
|
and target_handle_candidate._needs_pre_forward_unshard
|
|
and not target_handle_candidate._prefetched
|
|
):
|
|
target_handle = target_handle_candidate
|
|
else:
|
|
target_handle = None
|
|
|
|
return target_handle
|
|
|
|
|
|
def _get_training_state(
|
|
handle: FlatParamHandle,
|
|
) -> HandleTrainingState:
|
|
"""Returns the training state of the handles in ``handle``."""
|
|
_p_assert(handle, "Expects a non-empty handle")
|
|
return handle._training_state
|
|
|
|
|
|
@no_type_check
|
|
def _register_pre_forward_hook(
|
|
state: _FSDPState,
|
|
module: nn.Module,
|
|
) -> None:
|
|
"""
|
|
Registers a pre-forward hook on ``module``.
|
|
"""
|
|
for forward_handle in state._pre_forward_handles:
|
|
forward_handle.remove()
|
|
state._pre_forward_handles.clear()
|
|
module_param_handle = state._fully_sharded_module_to_handle.get(module, None)
|
|
hook = functools.partial(
|
|
_pre_forward, state, module_param_handle, _pre_forward_unshard
|
|
)
|
|
state._pre_forward_handles.append(
|
|
module.register_forward_pre_hook(hook, prepend=True, with_kwargs=True)
|
|
)
|
|
|
|
|
|
@no_type_check
|
|
def _register_post_forward_hook(
|
|
state: _FSDPState,
|
|
module: nn.Module,
|
|
) -> None:
|
|
"""
|
|
Registers a post-forward hook on ``module``. Even if the module has no
|
|
handles, we should register the hook since it will register the module's
|
|
pre-backward hook.
|
|
"""
|
|
for forward_handle in state._post_forward_handles:
|
|
forward_handle.remove()
|
|
state._post_forward_handles.clear()
|
|
module_param_handle = state._fully_sharded_module_to_handle.get(module, None)
|
|
hook = functools.partial(
|
|
_post_forward,
|
|
state,
|
|
module_param_handle,
|
|
_post_forward_reshard,
|
|
)
|
|
state._post_forward_handles.append(module.register_forward_hook(hook))
|
|
|
|
|
|
@no_type_check
|
|
def _register_root_pre_forward_hook(
|
|
state: _FSDPState,
|
|
module: nn.Module,
|
|
):
|
|
"""
|
|
Registers root pre-forward hook on ``module``, which should be the local
|
|
FSDP root.
|
|
|
|
NOTE: For the current composable FSDP design, we have each application of
|
|
``fully_shard()`` to a module to indicate that that module is the local
|
|
FSDP root. We may remove this assumption in the future, in which case we
|
|
will need to register this root pre-forward hook on any candidate module
|
|
that may be the local FSDP root.
|
|
"""
|
|
for forward_handle in state._root_pre_forward_handles:
|
|
forward_handle.remove()
|
|
state._root_pre_forward_handles.clear()
|
|
hook = functools.partial(_root_pre_forward, state)
|
|
state._root_pre_forward_handles.append(
|
|
module.register_forward_pre_hook(hook, prepend=True, with_kwargs=True)
|
|
)
|
|
|
|
|
|
@no_type_check
|
|
def _register_pre_backward_hooks(
|
|
state: _FSDPState,
|
|
module: nn.Module,
|
|
outputs: Any,
|
|
handle: FlatParamHandle,
|
|
) -> None:
|
|
"""
|
|
Registers pre-backward hooks on the tensors that require gradients in the
|
|
forward pass outputs ``outputs``, which were computed using the
|
|
``FlatParameter`` s of ``handles``.
|
|
|
|
Args:
|
|
module (nn.Module): Fully sharded module (see [Note: Fully Sharded
|
|
Module]).
|
|
|
|
Returns:
|
|
Forward pass outputs with pre-backward hooks registered to tensors that
|
|
require gradients.
|
|
"""
|
|
# If there is no gradient computation, then there is no need for
|
|
# pre-backward logic
|
|
if not torch.is_grad_enabled():
|
|
return outputs
|
|
if state._is_root:
|
|
state._post_backward_callback_queued = False # only defined on the root
|
|
|
|
if handle:
|
|
handle._needs_pre_backward_unshard = False
|
|
# Since these handles' `FlatParameter`s participated in a forward, we
|
|
# conservatively assume that they will be used in the backward
|
|
handle._ran_pre_backward_hook = False
|
|
|
|
def _register_hook(t: torch.Tensor) -> torch.Tensor:
|
|
if t.requires_grad:
|
|
t.register_hook(
|
|
functools.partial(_pre_backward_hook, state, module, handle)
|
|
)
|
|
if handle:
|
|
handle._needs_pre_backward_unshard = True
|
|
return t
|
|
|
|
return _apply_to_tensors(_register_hook, outputs)
|
|
|
|
|
|
def _register_post_backward_hook(
|
|
state: _FSDPState,
|
|
handle: Optional[FlatParamHandle],
|
|
) -> None:
|
|
"""
|
|
Registers post-backward hooks on the ``FlatParameter`` s'
|
|
``AccumulateGrad`` objects to reshard and to reduce-scatter gradients.
|
|
|
|
The ``AccumulateGrad`` object represents the last function that finalizes
|
|
the ``FlatParameter`` 's gradient, so it only runs after its entire
|
|
gradient computation has finished.
|
|
|
|
We register the post-backward hook only once in the *first* forward that a
|
|
``FlatParameter`` participates in. This relies on the ``AccumulateGrad``
|
|
object being preserved through multiple forwards.
|
|
|
|
NOTE: We follow this heuristic to prefer the *first* forward to target the
|
|
parameter mixed precision case, where there are *separate*
|
|
``AccumulateGrad`` objects across the different forwards. (Without
|
|
parameter mixed precision, the ``AccumulateGrad`` objects are the same.) If
|
|
we instead prefer the *last* forward, then the hook runs early.
|
|
"""
|
|
# If there is no gradient computation, then there is no need for
|
|
# post-backward logic
|
|
if not torch.is_grad_enabled():
|
|
return
|
|
if not handle:
|
|
return
|
|
flat_param = handle.flat_param
|
|
|
|
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
|
already_registered = hasattr(flat_param, "_post_backward_hook_handle")
|
|
if already_registered or not flat_param.requires_grad:
|
|
return
|
|
hook = functools.partial(_post_backward_hook, state, handle)
|
|
hook_handle = flat_param.register_post_accumulate_grad_hook(hook)
|
|
flat_param._post_backward_hook_handle = hook_handle # type: ignore[attr-defined]
|
|
else:
|
|
already_registered = hasattr(flat_param, "_post_backward_hook_state")
|
|
if already_registered or not flat_param.requires_grad:
|
|
return
|
|
# Get the `AccumulateGrad` object
|
|
temp_flat_param = flat_param.expand_as(flat_param)
|
|
_p_assert(
|
|
temp_flat_param.grad_fn is not None,
|
|
"The `grad_fn` is needed to access the `AccumulateGrad` and "
|
|
"register the post-backward hook",
|
|
)
|
|
acc_grad = temp_flat_param.grad_fn.next_functions[0][0] # type: ignore[union-attr]
|
|
assert acc_grad is not None
|
|
hook_handle = acc_grad.register_hook(
|
|
functools.partial(_post_backward_hook, state, handle)
|
|
)
|
|
flat_param._post_backward_hook_state = (acc_grad, hook_handle) # type: ignore[attr-defined]
|
|
|
|
|
|
def _register_post_backward_reshard_only_hook(
|
|
state: _FSDPState,
|
|
handle: Optional[FlatParamHandle],
|
|
args: Tuple[Any, ...],
|
|
kwargs: Dict[str, Any],
|
|
) -> None:
|
|
"""
|
|
Registers post-backward hooks to reshard flat parameters that do not
|
|
require gradient. We register these using multi-post-grad hooks on the
|
|
input activations to ensure that all gradients that may depend on the
|
|
parameters have been computed before resharding.
|
|
"""
|
|
# If there is no gradient computation, then there is no need for
|
|
# post-backward logic
|
|
if not torch.is_grad_enabled():
|
|
return
|
|
# Construct `inp_tensors` lazily to avoid CPU overhead in typical case
|
|
# where each flat parameter requires gradient
|
|
inp_tensors: Optional[List[torch.Tensor]] = None
|
|
if not handle:
|
|
return
|
|
flat_param = handle.flat_param
|
|
|
|
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
|
already_registered = hasattr(flat_param, "_post_backward_hook_handle")
|
|
else:
|
|
already_registered = hasattr(flat_param, "_post_backward_hook_state")
|
|
|
|
if already_registered or flat_param.requires_grad:
|
|
return
|
|
if inp_tensors is None:
|
|
args_flat = pytree.arg_tree_leaves(*args, **kwargs)
|
|
inp_tensors = [
|
|
obj for obj in args_flat if torch.is_tensor(obj) and obj.requires_grad
|
|
]
|
|
assert inp_tensors is not None # mypy
|
|
hook_handle = register_multi_grad_hook(
|
|
inp_tensors, functools.partial(_post_backward_reshard, state, handle)
|
|
)
|
|
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
|
flat_param._post_backward_hook_handle = hook_handle # type: ignore[attr-defined, assignment]
|
|
else:
|
|
flat_param._post_backward_hook_state = (hook_handle,) # type: ignore[attr-defined, assignment]
|
|
|
|
|
|
@no_type_check
|
|
def _register_post_backward_final_callback(
|
|
state: _FSDPState, module: nn.Module
|
|
) -> None:
|
|
"""
|
|
Registers the post-backward final callback that runs at the end of the
|
|
backward pass. This should be called from the root FSDP instance at the
|
|
beginning of the pre-backward.
|
|
"""
|
|
_p_assert(
|
|
state._is_root,
|
|
"Only the root FSDP instance should register the post-backward callback",
|
|
)
|
|
if state._post_backward_callback_queued:
|
|
return
|
|
_assert_in_training_states(state, [TrainingState.IDLE])
|
|
# Trace does not need this callback
|
|
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
|
state._post_backward_callback_queued = True
|
|
Variable._execution_engine.queue_callback(
|
|
functools.partial(_post_backward_final_callback, state, module)
|
|
)
|
|
|
|
|
|
def _wait_for_computation_stream(
|
|
computation_stream: torch.Stream,
|
|
unshard_stream: torch.Stream,
|
|
pre_unshard_stream: torch.Stream,
|
|
):
|
|
"""
|
|
Has the unshard and pre-unshard streams wait for the computation stream.
|
|
For example, this should be called in the FSDP root's pre-forward to
|
|
respect optimizer step computation.
|
|
"""
|
|
# Tracing does not need to wait
|
|
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
|
return
|
|
unshard_stream.wait_stream(computation_stream) # type: ignore[attr-defined]
|
|
# Having the pre-all-gather stream wait for the current stream even if we
|
|
# do not leverage the pre-all-gather stream is tolerable since this only
|
|
# runs once per iteration
|
|
pre_unshard_stream.wait_stream(computation_stream) # type: ignore[attr-defined]
|
|
|
|
|
|
def _reset_flat_param_grad_info_if_needed(
|
|
handles: List[FlatParamHandle],
|
|
):
|
|
"""
|
|
Clears the original parameters' gradients if needed. This method's CPU
|
|
overhead is minimal, so we may call it throughout FSDP methods, which serve
|
|
as callsites to free the gradient memory earlier.
|
|
"""
|
|
if not isinstance(handles, list):
|
|
handles = [handles]
|
|
for handle in handles:
|
|
if handle._use_orig_params:
|
|
handle._reset_flat_param_grad_info_if_needed()
|
|
|
|
|
|
@no_type_check
|
|
def _get_buffers_and_dtypes_for_computation(
|
|
state: _FSDPState,
|
|
root_module: nn.Module,
|
|
) -> Tuple[List[torch.Tensor], List[Optional[torch.dtype]]]:
|
|
"""
|
|
Returns all buffers in the module tree rooted at ``root_module`` and a
|
|
corresponding list of the buffer dtypes for computation. Each buffer dtype
|
|
is either ``None`` if buffer mixed precision is not enabled or the buffer
|
|
low precision dtype otherwise.
|
|
"""
|
|
_p_assert(state._is_root, "Expects the root to cast buffers")
|
|
buffers: List[torch.Tensor] = []
|
|
buffer_dtypes: List[Optional[torch.dtype]] = []
|
|
visited_buffers: Set[torch.Tensor] = set()
|
|
# Traverse the FSDP states bottom-up so that we prefer the owning FSDP
|
|
# instance's mixed precision setting for each buffer
|
|
fsdp_states, fsdp_modules = traversal_utils._get_fsdp_states_with_modules(
|
|
root_module
|
|
)
|
|
for fsdp_state, fsdp_module in zip(reversed(fsdp_states), reversed(fsdp_modules)):
|
|
for buffer_name, buffer in fsdp_module.named_buffers():
|
|
if buffer in visited_buffers:
|
|
continue
|
|
visited_buffers.add(buffer)
|
|
if clean_tensor_name(buffer_name) in fsdp_state._ignored_buffer_names:
|
|
continue
|
|
buffers.append(buffer)
|
|
buffer_dtypes.append(fsdp_state.mixed_precision.buffer_dtype)
|
|
assert len(buffers) == len(buffer_dtypes), f"{len(buffers)} {len(buffer_dtypes)}"
|
|
return buffers, buffer_dtypes
|
|
|
|
|
|
@no_type_check
|
|
def _get_orig_buffer_dtypes(
|
|
state: _FSDPState,
|
|
buffer_names: List[str],
|
|
) -> List[torch.dtype]:
|
|
"""
|
|
Returns the original buffer types of the given buffer names.
|
|
"""
|
|
buffer_dtypes: List[torch.dtype] = []
|
|
for buffer_name in buffer_names:
|
|
_p_assert(
|
|
buffer_name in state._buffer_name_to_orig_dtype,
|
|
f"{buffer_name} is missing from pre-computed dict on rank "
|
|
f"{state.rank}, which only has keys "
|
|
f"{state._buffer_name_to_orig_dtype.keys()}",
|
|
)
|
|
buffer_dtypes.append(state._buffer_name_to_orig_dtype[buffer_name])
|
|
return buffer_dtypes
|
|
|
|
|
|
def _cast_buffers_to_dtype_and_device(
|
|
buffers: List[torch.Tensor],
|
|
buffer_dtypes: List[Optional[torch.dtype]],
|
|
device: torch.device,
|
|
) -> None:
|
|
"""
|
|
Casts ``buffers`` to the dtypes given by ``buffer_dtypes`` and moves them
|
|
to ``device``. If an element in ``buffer_dtypes`` is ``None``, then the
|
|
corresponding buffer is only moved to ``device``.
|
|
"""
|
|
_p_assert(
|
|
buffer_dtypes is None or len(buffers) == len(buffer_dtypes),
|
|
f"Expects `buffers` and `buffer_dtypes` to have the same length if "
|
|
f"`buffer_dtypes` is specified but got {len(buffers)} and "
|
|
f"{len(buffer_dtypes)}",
|
|
)
|
|
for buffer, buffer_dtype in zip(buffers, buffer_dtypes):
|
|
if not torch.is_floating_point(buffer) or buffer_dtype is None:
|
|
buffer.data = buffer.to(device=device)
|
|
else:
|
|
buffer.data = buffer.to(device=device, dtype=buffer_dtype)
|