pytorch/torch/csrc/jit/autodiff.cpp
Thomas Viehmann 8408dff55a Add Type support to the fuser, fuse more (#14336)
Summary:
This adds scalar type support to the fuser, both internally (instead of auto / assuming float) and for the inputs/outputs.
We can now fuse things with input / output of arbitrary scalar type, in particular comparisons and where work well. So it fixes #13384 by returning the right type tensor (and adds a test where byte and double tensors are returned).
The type inference is done by re-calling PropagateTensorShapeOnNode in the compilation, I would venture that it isn't prohibitively expensive compared to the actual compilation. (Propagation was fixed for where to return the second argument's type and amended to handle FusedConcat.)
I'm not sure how to add a check for the code generated by the fuser, but I am not sure we absolutely need to (we'd see if it is invalid / produces wrong results).

Thanks in particular to apaszke, fmassa, mruberry for advice and encouragement! All the errors are my own.

I have discussed order of PRs briefly with mruberry, if this goes in before he submits the PR, he graciously agreed to rebasing his, but I'd happily rebase, too.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14336

Differential Revision: D13202620

Pulled By: soumith

fbshipit-source-id: 855159e261fa15f21aca3053bfc05fb3f720a8ef
2018-11-27 11:33:11 -08:00

792 lines
36 KiB
C++

#include "torch/csrc/jit/autodiff.h"
#include "torch/csrc/jit/passes/dead_code_elimination.h"
#include "torch/csrc/jit/passes/constant_pooling.h"
#include "torch/csrc/jit/symbolic_variable.h"
#include "torch/csrc/jit/operator.h"
#include "torch/csrc/utils/functional.h"
#include <torch/csrc/jit/assertions.h>
#include <algorithm>
#include <memory>
namespace torch { namespace jit {
using value_map = std::unordered_map<Value*, Value*>;
using value_set = std::unordered_set<Value*>;
void wrapDim(int64_t & dim, const std::vector<int64_t> & sizes) {
if (dim < 0) {
dim += sizes.size();
}
}
bool isDifferentiable(Node * n) {
// TODO: scalar-tensor ops should be canonicalized
static OperatorSet differentiable_ops = {
"aten::add(Tensor self, Tensor other, *, Scalar alpha) -> Tensor",
"aten::add(Tensor self, Scalar other, Scalar alpha) -> Tensor",
"aten::sub(Tensor self, Tensor other, *, Scalar alpha) -> Tensor",
"aten::sub(Tensor self, Scalar other, Scalar alpha) -> Tensor",
"aten::mul(Tensor self, Tensor other) -> Tensor",
"aten::mul(Tensor self, Scalar other) -> Tensor",
"aten::div(Tensor self, Tensor other) -> Tensor",
"aten::div(Tensor self, Scalar other) -> Tensor",
"aten::max(Tensor self, Tensor other) -> Tensor",
"aten::min(Tensor self, Tensor other) -> Tensor",
"aten::sigmoid(Tensor self) -> Tensor",
"aten::tanh(Tensor self) -> Tensor",
"aten::relu(Tensor self) -> Tensor",
"aten::threshold(Tensor self, Scalar threshold, Scalar value) -> Tensor",
"aten::exp(Tensor self) -> Tensor",
"aten::t(Tensor self) -> Tensor",
"aten::neg(Tensor self) -> Tensor",
"aten::clamp(Tensor self, Scalar? min, Scalar? max) -> Tensor",
"aten::where(Tensor condition, Tensor self, Tensor other) -> Tensor",
"aten::type_as(Tensor self, Tensor other) -> Tensor",
"aten::unsqueeze(Tensor self, int dim) -> Tensor",
"aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta, Scalar alpha) -> Tensor",
"aten::mm(Tensor self, Tensor mat2) -> Tensor",
"aten::lt(Tensor self, Tensor other) -> Tensor",
"aten::le(Tensor self, Tensor other) -> Tensor",
"aten::gt(Tensor self, Tensor other) -> Tensor",
"aten::ge(Tensor self, Tensor other) -> Tensor",
"aten::eq(Tensor self, Tensor other) -> Tensor",
"aten::ne(Tensor self, Tensor other) -> Tensor",
"aten::abs(Tensor self) -> Tensor",
"aten::acos(Tensor self) -> Tensor",
"aten::asin(Tensor self) -> Tensor",
"aten::atan(Tensor self) -> Tensor",
"aten::ceil(Tensor self) -> Tensor",
"aten::cos(Tensor self) -> Tensor",
"aten::cosh(Tensor self) -> Tensor",
"aten::exp(Tensor self) -> Tensor",
"aten::expm1(Tensor self) -> Tensor",
"aten::floor(Tensor self) -> Tensor",
"aten::fmod(Tensor self, Scalar other) -> Tensor",
"aten::frac(Tensor self) -> Tensor",
"aten::log(Tensor self) -> Tensor",
"aten::log10(Tensor self) -> Tensor",
"aten::log1p(Tensor self) -> Tensor",
"aten::log2(Tensor self) -> Tensor",
"aten::reciprocal(Tensor self) -> Tensor",
"aten::remainder(Tensor self, Scalar other) -> Tensor",
"aten::round(Tensor self) -> Tensor",
"aten::rsqrt(Tensor self) -> Tensor",
"aten::sin(Tensor self) -> Tensor",
"aten::sinh(Tensor self) -> Tensor",
"aten::tan(Tensor self) -> Tensor",
"aten::trunc(Tensor self) -> Tensor",
"aten::log_softmax(Tensor self, int dim) -> Tensor",
"aten::avg_pool2d(Tensor self, int[] kernel_size, int[] stride, int[] padding, bool ceil_mode, bool count_include_pad) -> Tensor",
"aten::max_pool2d_with_indices(Tensor self, int[] kernel_size, int[] stride, int[] padding, int[] dilation, bool ceil_mode) -> (Tensor, Tensor)",
"aten::thnn_conv2d_forward(Tensor self, Tensor weight, int[] kernel_size, Tensor? bias, int[] stride, int[] padding) -> (Tensor, Tensor, Tensor)",
"aten::native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)",
};
// TODO: add support for the following fusible operators.
// They're a little tricky to implement; max/min require mutability for best perf
// "aten::atan2(Tensor self) -> Tensor",
// "aten::max(Tensor self) -> Tensor",
// "aten::min(Tensor self) -> Tensor"
if (n->kind() == prim::Constant ||
n->kind() == prim::AutogradAdd ||
n->kind() == prim::ConstantChunk ||
n->kind() == prim::None)
return true;
if (differentiable_ops.find(n))
return true;
if (n->matches("aten::expand(Tensor self, int[] size, *, bool implicit) -> Tensor")) {
return n->get<std::vector<int64_t>>(attr::size) && n->is_constant(attr::implicit) &&
n->namedInput(attr::self)->type()->cast<CompleteTensorType>();
}
if (n->matches("aten::view(Tensor self, int[] size) -> Tensor")) {
return n->get<std::vector<int64_t>>(attr::size) &&
n->namedInput(attr::self)->type()->cast<CompleteTensorType>();
}
// linear blocks may appear as inputs to graph executors, but they are removed
// before differentiation occurs
if (n->kind() == prim::GradOf) {
auto body = n->blocks().at(0);
return std::all_of(
body->nodes().begin(),
body->nodes().end(),
static_cast<bool (*)(Node*)>(isDifferentiable));
}
return false;
}
bool isDifferentiable(Graph & g) {
return std::all_of(g.nodes().begin(), g.nodes().end(),
static_cast<bool(*)(Node*)>(isDifferentiable));
}
static std::vector<Value*> gradientForNode(Node* node, ArrayRef<Value*> grad_values) {
static const OperatorSet comparison_ops = {
"aten::lt(Tensor self, Tensor other) -> Tensor",
"aten::le(Tensor self, Tensor other) -> Tensor",
"aten::gt(Tensor self, Tensor other) -> Tensor",
"aten::ge(Tensor self, Tensor other) -> Tensor",
"aten::eq(Tensor self, Tensor other) -> Tensor",
"aten::ne(Tensor self, Tensor other) -> Tensor"
};
const auto build_sym_grad = [node](const std::vector<SymbolicVariable>& grads) -> std::vector<SymbolicVariable> {
auto inputs = fmap<SymbolicVariable>(node->inputs());
auto outputs = fmap<SymbolicVariable>(node->outputs());
if (node->matches("aten::add(Tensor self, Tensor other, *, Scalar alpha) -> Tensor")) {
return {grads.at(0), grads.at(0) * node->namedInput(attr::alpha), nullptr};
} else if (node->matches("aten::add(Tensor self, Scalar other, Scalar alpha) -> Tensor")) {
return {grads.at(0), nullptr, nullptr};
} else if (node->kind() == prim::AutogradAdd) {
return {grads.at(0), grads.at(0)};
} else if (node->matches("aten::sub(Tensor self, Tensor other, *, Scalar alpha) -> Tensor")) {
return {grads.at(0), -grads.at(0) * node->namedInput(attr::alpha), nullptr};
} else if (node->matches("aten::sub(Tensor self, Scalar other, Scalar alpha) -> Tensor")) {
return {grads.at(0), nullptr, nullptr};
} else if (node->matches("aten::mul(Tensor self, Tensor other) -> Tensor")) {
return {grads.at(0) * inputs.at(1), grads.at(0) * inputs.at(0)};
} else if (node->matches("aten::mul(Tensor self, Scalar other) -> Tensor")) {
return {grads.at(0) * inputs.at(1), nullptr};
} else if (node->matches("aten::div(Tensor self, Tensor other) -> Tensor")) {
return {grads.at(0) / inputs.at(1), -grads.at(0) * inputs.at(0) / (inputs.at(1) * inputs.at(1))};
} else if (node->matches("aten::div(Tensor self, Scalar other) -> Tensor")) {
return {grads.at(0) / inputs.at(1), nullptr};
} else if (node->matches("aten::max(Tensor self, Tensor other) -> Tensor")) {
return {grads.at(0) * (inputs.at(0) > inputs.at(1)).type_as(grads.at(0)),
grads.at(0) * (inputs.at(1) > inputs.at(0)).type_as(grads.at(0))};
} else if (node->matches("aten::min(Tensor self, Tensor other) -> Tensor")) {
return {grads.at(0) * (inputs.at(0) < inputs.at(1)).type_as(grads.at(0)),
grads.at(0) * (inputs.at(1) < inputs.at(0)).type_as(grads.at(0))};
} else if (node->matches("aten::where(Tensor condition, Tensor self, Tensor other) -> Tensor")) {
return {nullptr, grads.at(0) * inputs.at(0).type_as(grads.at(0)),
grads.at(0) * (1 - inputs.at(0)).type_as(grads.at(0))};
} else if (node->matches("aten::sigmoid(Tensor self) -> Tensor")) {
// TODO: The order of operations matter in this case. This
// works for ppc64le and x86_64. Need to look at why the
// order matters.
return {(1 - outputs.at(0)) * outputs.at(0) * grads.at(0)};
} else if (node->matches("aten::tanh(Tensor self) -> Tensor")) {
return {grads.at(0) * (1 - outputs.at(0) * outputs.at(0))};
} else if (node->matches("aten::relu(Tensor self) -> Tensor")) {
return {grads.at(0) * (outputs.at(0) > at::Scalar(0)).type_as(outputs.at(0))};
} else if (node->matches("aten::clamp(Tensor self, Scalar? min, Scalar? max) -> Tensor")) {
// handle the case that min/max is None
Value* min = inputs.at(1);
bool min_must_be_none = min->node()->kind() == prim::None;
Value* max = inputs.at(2);
bool max_must_be_none = max->node()->kind() == prim::None;
// XXX - this formula is wrong when min or max are not stricly prim::None
// but may be None dynamically. In this case an internal compiler error will
// get thrown when trying to generate expressions involving the values of min/max
if (!min_must_be_none && !max_must_be_none) {
return {grads.at(0)
* (1-(inputs.at(0) <= inputs.at(1)).type_as(inputs.at(0)))
* (1-(inputs.at(0) >= inputs.at(2)).type_as(inputs.at(0))), nullptr, nullptr};
} else if (max_must_be_none) {
return {grads.at(0)
* (1-(inputs.at(0) <= inputs.at(1)).type_as(inputs.at(0))), nullptr, nullptr};
} else if (min_must_be_none) {
return {grads.at(0)
* (1-(inputs.at(0) >= inputs.at(2)).type_as(inputs.at(0))), nullptr, nullptr};
} else {
return {grads.at(0), nullptr, nullptr};
}
} else if (node->matches("aten::threshold(Tensor self, Scalar threshold, Scalar value) -> Tensor")) {
auto threshold = node->get<at::Scalar>(attr::threshold).value();
return {grads.at(0) * (inputs.at(0) > threshold).type_as(outputs.at(0)), nullptr, nullptr};
} else if (node->matches("aten::exp(Tensor self) -> Tensor")) {
return {grads.at(0) * (outputs.at(0))};
} else if (node->matches("aten::t(Tensor self) -> Tensor")) {
return {grads.at(0).t()};
} else if (node->matches("aten::neg(Tensor self) -> Tensor")) {
return {-grads.at(0)};
} else if (node->matches("aten::abs(Tensor self) -> Tensor")) {
return {grads.at(0) * inputs.at(0).sign()};
} else if (node->matches("aten::acos(Tensor self) -> Tensor")) {
return {grads.at(0) * -((-inputs.at(0) * inputs.at(0) + at::Scalar(1)).rsqrt())};
} else if (node->matches("aten::asin(Tensor self) -> Tensor")) {
return {grads.at(0) * (-inputs.at(0) * inputs.at(0) + at::Scalar(1)).rsqrt()};
} else if (node->matches("aten::atan(Tensor self) -> Tensor")) {
return {grads.at(0) / (inputs.at(0) * inputs.at(0) + at::Scalar(1))};
} else if (node->matches("aten::ceil(Tensor self) -> Tensor")) {
return {SymbolicVariable::zeros_like(grads.at(0))};
} else if (node->matches("aten::cos(Tensor self) -> Tensor")) {
return {grads.at(0) * -inputs.at(0).sin()};
} else if (node->matches("aten::cosh(Tensor self) -> Tensor")) {
return {grads.at(0) * inputs.at(0).sinh()};
} else if (node->matches("aten::exp(Tensor self) -> Tensor")) {
return {grads.at(0) * outputs.at(0)};
} else if (node->matches("aten::expm1(Tensor self) -> Tensor")) {
return {grads.at(0) * (outputs.at(0) + at::Scalar(1))};
} else if (node->matches("aten::floor(Tensor self) -> Tensor")) {
return {SymbolicVariable::zeros_like(grads.at(0))};
} else if (node->matches("aten::fmod(Tensor self, Scalar other) -> Tensor")) {
return {grads.at(0), nullptr};
} else if (node->matches("aten::frac(Tensor self) -> Tensor")) {
return {grads.at(0)};
} else if (node->matches("aten::log(Tensor self) -> Tensor")) {
return {grads.at(0) / inputs.at(0)};
} else if (node->matches("aten::log10(Tensor self) -> Tensor")) {
return {grads.at(0) / (inputs.at(0) * 2.3025850929940456)};
} else if (node->matches("aten::log1p(Tensor self) -> Tensor")) {
return {grads.at(0) / (inputs.at(0) + at::Scalar(1))};
} else if (node->matches("aten::log2(Tensor self) -> Tensor")) {
return {grads.at(0) / (inputs.at(0) * 0.6931471805599453)};
} else if (node->matches("aten::reciprocal(Tensor self) -> Tensor")) {
return {-grads.at(0) * outputs.at(0) * outputs.at(0)};
} else if (node->matches("aten::remainder(Tensor self, Scalar other) -> Tensor")) {
return {grads.at(0), nullptr};
} else if (node->matches("aten::round(Tensor self) -> Tensor")) {
return {SymbolicVariable::zeros_like(grads.at(0))};
} else if (node->matches("aten::rsqrt(Tensor self) -> Tensor")) {
return {grads.at(0) * outputs.at(0).pow(3.) * -0.5};
} else if (node->matches("aten::sin(Tensor self) -> Tensor")) {
return {grads.at(0) * inputs.at(0).cos()};
} else if (node->matches("aten::sinh(Tensor self) -> Tensor")) {
return {grads.at(0) * inputs.at(0).cosh()};
} else if (node->matches("aten::tan(Tensor self) -> Tensor")) {
return {grads.at(0) * (1. + outputs.at(0) * outputs.at(0))};
} else if (node->matches("aten::trunc(Tensor self) -> Tensor")) {
return {SymbolicVariable::zeros_like(grads.at(0))};
} else if (node->kind() == prim::ConstantChunk) {
return {SymbolicVariable::cat(grads, node->i(attr::dim))};
} else if (node->matches("aten::view(Tensor self, int[] size) -> Tensor") ||
node->matches("aten::reshape(Tensor self, int[] shape) -> Tensor")) {
// TODO: if sizes are not available statically, add an operator that reutrns them as a tuple
auto sizes = node->namedInput(attr::self)->type()->expect<CompleteTensorType>()->sizes();
return {grads.at(0).reshape(sizes), nullptr};
} else if (node->matches("aten::type_as(Tensor self, Tensor other) -> Tensor")) {
return {grads.at(0).type_as(inputs.at(0)), nullptr};
} else if (node->matches("aten::unsqueeze(Tensor self, int dim) -> Tensor")) {
return {grads.at(0).squeeze(node->namedInput(attr::dim)), nullptr};
} else if (node->matches("aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta, Scalar alpha) -> Tensor")) {
return {grads.at(0) * node->namedInput(attr::beta),
grads.at(0).mm(inputs.at(2).t()) * node->namedInput(attr::alpha),
inputs.at(1).t().mm(grads.at(0)) * node->namedInput(attr::alpha),
nullptr, nullptr};
} else if (node->matches("aten::mm(Tensor self, Tensor mat2) -> Tensor")) {
return {grads.at(0).mm(inputs.at(1).t()), inputs.at(0).t().mm(grads.at(0))};
} else if (node->matches("aten::expand(Tensor self, int[] size, *, bool implicit) -> Tensor")) {
const auto& input_sizes = inputs.at(0).sizes();
if (input_sizes.size() == 0)
return {grads.at(0).sum(), nullptr, nullptr};
auto grad_sizes = node->get<std::vector<int64_t>>(attr::size).value();
auto grad = grads.at(0);
while (grad_sizes.size() > input_sizes.size()) {
grad = grad.sum(0, false);
grad_sizes.erase(grad_sizes.begin());
}
for (size_t i = 0; i < input_sizes.size(); ++i) {
if (input_sizes[i] == 1 && grad_sizes[i] > 1) {
grad = grad.sum(i, true);
}
}
return {grad, nullptr, nullptr};
} else if (node->matches("aten::squeeze(Tensor self) -> Tensor")) {
const auto& sizes = inputs.at(0).sizes();
std::vector<size_t> squeezed_dims;
for (size_t i = 0; i < sizes.size(); ++i) {
if (sizes[i] != 1) continue;
squeezed_dims.push_back(i);
}
SymbolicVariable returned_grad = grads.at(0);
for (const auto& dim : squeezed_dims) {
returned_grad = returned_grad.unsqueeze(dim);
}
return {returned_grad};
} else if (node->matches("aten::squeeze(Tensor self, int dim) -> Tensor", /*const_inputs=*/attr::dim)) {
int64_t dim = *node->get<int64_t>(attr::dim);
const auto& sizes = inputs.at(0).sizes();
wrapDim(dim, sizes);
if (sizes.size() == 0) {
return {grads.at(0), nullptr};
}
return {sizes.at(dim) > 1 ? grads.at(0) : grads.at(0).unsqueeze(dim), nullptr};
} else if (node->matches("aten::cat(Tensor[] tensors, int dim) -> Tensor", /*const_inputs=*/attr::dim)) {
int dim = *node->get<int64_t>(attr::dim);
auto tensor_inputs = inputs; tensor_inputs.pop_back();
const auto& first_sizes = tensor_inputs.at(0).sizes();
const auto has_first_sizes = [&first_sizes](SymbolicVariable var) {
return var.sizes() == first_sizes;
};
// NB: this is a specialization for the common case where all inputs are
// of equal sizes. We can use a single split operation to handle that.
if (std::all_of(tensor_inputs.begin(), tensor_inputs.end(), has_first_sizes)) {
auto tensor_grads = grads.at(0).chunk(tensor_inputs.size(), dim);
tensor_grads.emplace_back(nullptr); // for attr::dim
return tensor_grads;
} else {
size_t offset = 0;
auto grad = grads.at(0);
std::vector<SymbolicVariable> tensor_grads;
for (auto input : tensor_inputs) {
tensor_grads.push_back(grad.narrow(dim, offset, input.sizes()[dim]));
offset += input.sizes()[dim];
}
tensor_grads.emplace_back(nullptr); // for attr::dim
return tensor_grads;
}
} else if (comparison_ops.find(node)) {
return {nullptr, nullptr};
} else if (node->matches("aten::avg_pool2d(Tensor self, int[] kernel_size, int[] stride, int[] padding, bool ceil_mode, bool count_include_pad) -> Tensor")) {
JIT_ASSERT(grads.size() == 1);
auto graph = node->owningGraph();
auto backward_value = graph->insert(aten::avg_pool2d_backward, {
grads.at(0).value(),
node->namedInput(attr::self),
node->namedInput(attr::kernel_size),
node->namedInput(attr::stride),
node->namedInput(attr::padding),
node->namedInput(attr::ceil_mode),
node->namedInput(attr::count_include_pad)});
return {backward_value->node()->output(0), nullptr, nullptr, nullptr, nullptr, nullptr};
} else if (node->matches("aten::max_pool2d_with_indices(Tensor self, int[] kernel_size, int[] stride, int[] padding, int[] dilation, bool ceil_mode) -> (Tensor, Tensor)")) {
JIT_ASSERT(grads.size() == 2);
auto graph = node->owningGraph();
auto backward_value = graph->insert(aten::max_pool2d_with_indices_backward, {
grads.at(0).value(),
node->namedInput(attr::self),
node->namedInput(attr::kernel_size),
node->namedInput(attr::stride),
node->namedInput(attr::padding),
node->namedInput(attr::dilation),
node->namedInput(attr::ceil_mode),
outputs.at(1).value()
});
return {backward_value->node()->output(0), nullptr, nullptr, nullptr, nullptr, nullptr};
} else if (node->matches("aten::thnn_conv2d_forward(Tensor self, Tensor weight, int[] kernel_size, Tensor? bias, int[] stride, int[] padding) -> (Tensor, Tensor, Tensor)")) {
auto graph = node->owningGraph();
auto backward_value = graph->insert(aten::thnn_conv2d_backward, {
grads.at(0).value(),
inputs.at(0).value(),
inputs.at(1).value(),
node->namedInput(attr::kernel_size),
node->namedInput(attr::stride),
node->namedInput(attr::padding),
outputs.at(1).value(),
outputs.at(2).value(),
graph->insertConstant(std::vector<bool>{true, true, true})
});
// graph->insert returns a tuple automatically if multiple outputs are returned. So unpack them again.
Node* tuple_unpack_node = graph->insertNode(graph->createTupleUnpack(backward_value));
auto tuple_outputs = tuple_unpack_node->outputs();
JIT_ASSERT(tuple_outputs.size() == size_t(3));
return {tuple_outputs[0], tuple_outputs[1], nullptr, tuple_outputs[2], nullptr, nullptr};
} else if (node->matches("aten::native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)")) {
auto graph = node->owningGraph();
auto backward_value = graph->insert(aten::native_batch_norm_backward, {
grads.at(0).value(),
inputs.at(0).value(),
inputs.at(1).value(),
inputs.at(3).value(),
inputs.at(4).value(),
outputs.at(1).value(),
outputs.at(2).value(),
inputs.at(5).value(),
inputs.at(7).value(),
graph->insertConstant(std::vector<bool>{true, true, true})
});
// graph->insert returns a tuple automatically if multiple outputs are returned. So unpack them again.
Node* tuple_unpack_node = graph->insertNode(graph->createTupleUnpack(backward_value));
auto tuple_outputs = tuple_unpack_node->outputs();
JIT_ASSERT(tuple_outputs.size() == size_t(3));
return {tuple_outputs[0], tuple_outputs[1], tuple_outputs[2], nullptr, nullptr, nullptr, nullptr, nullptr};
} else if (node->matches("aten::log_softmax(Tensor self, int dim) -> Tensor")) {
JIT_ASSERT(grads.size() == 1);
auto graph = node->owningGraph();
auto backward_value = graph->insert(aten::_log_softmax_backward_data, {
grads.at(0).value(),
outputs.at(0).value(),
node->namedInput(attr::dim),
node->namedInput(attr::self)
});
return {backward_value->node()->output(0), nullptr};
} else if (node->kind() == prim::Constant || node->kind() == prim::None) {
return {};
}
throw std::runtime_error(std::string("failed to differentiate `") + node->kind().toDisplayString() + "`");
};
if (!isDifferentiable(node)) {
throw std::runtime_error(std::string("differentiation of ") + node->kind().toDisplayString() + " "
"is not supported, or it is missing necessary type information");
}
auto sym_grads = build_sym_grad(fmap<SymbolicVariable>(grad_values));
return fmap(sym_grads, [](const SymbolicVariable &v) { return v.value(); });
}
// If we have a function y = f(x) with jacobian J, the backwards of f is dx = J^t dy.
// Note that because the backwards always implements this matrix multiply,
// we know that it maps an input vector of zeros to an output vector of zero
// regardless of what operations it choses to do inside to actually implement
// the matrix multiply (most use some optimized form and never generate J^t).
// More generally, we know that all of the backward computations are linear and
// can use this property to do more aggressive optimizations later.
// It is ok to replace any backward function with known-zero inputs with something
// that produces known-zero outputs. This function encloses each know-linear
// backward function in a 'GradOf' sub-block so that we can perform optimizations
// using this information. In particular, specializeUndef will observe if
// all the inputs to the linear block are Undef, which the autograd uses to represent
// zeros, and then propagate the undefs to the outputs of the block.
static std::vector<Value*> linearGradientForNode(Node* node, ArrayRef<Value*> grad_values) {
auto & graph = *node->owningGraph();
auto linear = graph.insertNode(graph.create(prim::GradOf, {grad_values}, 0));
// to make reading gradient graphs easier, remember the name of the forward op
linear->s_(attr::name, node->kind().toDisplayString());
auto block = linear->addBlock();
WithInsertPoint guard(block);
auto results = gradientForNode(node, grad_values);
return fmap(results, [block, linear](Value *grad) -> Value* {
if (!grad) return nullptr;
block->registerOutput(grad);
return linear->addOutput()->copyMetadata(grad);
});
}
struct ReverseDetails {
ReverseDetails(value_map&& grad_map, Block * reverse_block)
: grad_map(std::move(grad_map))
, reverse_block(reverse_block) {}
value_map grad_map;
Block * reverse_block;
};
// AutogradAdd is a special addition function that handles Undef
// AutogradAdd(a, b) == a + b if defined(a) and defined(b)
// AutogradAdd(Undef, b) == b
// AutogradAdd(a, Undef) == a
// AutogradAdd(Undef, Undef) == Undef
static Value* createAutogradAdd(Value* a, Value* b) {
auto graph = a->owningGraph();
return graph->insertNode(graph->create(prim::AutogradAdd, {a, b}))->output();
}
// Before:
// - grad_desc has field f initialized to the original 0-stage graph
// After:
// - the last node of f (f->nodes().reverse()[0]) is a gradient node
// whose block has vjp inputs for all outputs that require_grad
// and vjp outputs for all primal inputs that require_grad
// - grad_desc has df_input_vjps and df_output_vjps set
// (but df_input_vjps will be modified later as well)
static ReverseDetails addReverseInline(Gradient& grad_desc) {
auto & graph = *grad_desc.f;
// note: reverse_node is intentionally not inserted to avoid
// accidentally acting on it (e.g. in elminate dead code),
// std::cout << *reverse_node << to view its state.
auto reverse_node = graph.create(prim::Reverse, 0);
auto reverse_block = reverse_node->addBlock();
WithInsertPoint guard(reverse_block);
value_map grad_map; // x -> dx mapping
const auto get_grad = [&](Value* v) -> Value* {
auto it = grad_map.find(v);
if (it == grad_map.end()) {
auto undef = graph.insertNode(graph.createUndefined());
std::tie(it, std::ignore) = grad_map.emplace(v, undef->output());
}
return it->second;
};
const auto set_grad = [&](Value *x, Value *dx) {
if (Value * prev_grad = grad_map[x]) {
grad_map[x] = createAutogradAdd(prev_grad, dx);
} else {
grad_map[x] = dx;
}
};
auto outputs = graph.outputs();
for (size_t i = 0, num_outputs = outputs.size(); i < num_outputs; ++i) {
Value * output = outputs[i];
if (!output->requires_grad())
continue;
Value * output_grad = reverse_block->addInput()->setType(output->type());
set_grad(output, output_grad);
grad_desc.df_input_vjps.push_back(i);
}
for (auto it = graph.nodes().rbegin(), end = graph.nodes().rend(); it != end; ++it) {
Node *node = *it;
auto inputs = node->inputs();
auto outputs = node->outputs();
if (std::all_of(outputs.begin(), outputs.end(), [](Value *v) { return !v->requires_grad(); })) {
continue;
}
value_list grad_inputs = linearGradientForNode(node, fmap(node->outputs(), get_grad));
JIT_ASSERT(grad_inputs.size() == node->inputs().size());
for (size_t i = 0, num_inputs = grad_inputs.size(); i < num_inputs; ++i) {
if (!inputs[i]->requires_grad()) continue;
// NB: Not returning a gradient w.r.t. a value that requires grad is normal if the
// input is non-differentiable. This happens e.g. in the aten::type_as case.
if (!grad_inputs[i]) continue;
set_grad(inputs[i], grad_inputs[i]);
}
}
auto inputs = graph.inputs();
for (size_t i = 0, num_inputs = inputs.size(); i < num_inputs; ++i) {
Value * input = inputs[i];
if (!input->requires_grad())
continue;
// NB: Not having a gradient defined w.r.t. an input to the graph which requires grad
// can happen and is not an error. It might have been used only in non-differentiable
// contexts (e.g. as second input to aten::type_as). In that case we simply ignore it
// as an output, because it won't ever produce any meaningful values.
if (grad_map.count(input) == 0) continue;
reverse_block->registerOutput(get_grad(input));
grad_desc.df_output_vjps.push_back(i);
}
return ReverseDetails(std::move(grad_map), reverse_block);
}
// Any temporary value from the primal graphs needs to be captured for later use in the
// reverse graph, to avoid costly recomputations. However, a lot of the nodes we have
// in our graphs are simply constants, which are cheap to execute and replicate, and so
// it's better to just copy them into the reverse graph, without polluting the output
// lists unnecessarily.
static void liftConstants(Gradient& grad_desc, ReverseDetails& rev_info) {
static const auto err = [](Value*) -> Value* {
throw std::runtime_error("unexpected input");
};
auto & graph = *grad_desc.f;
Block* reverse_block = rev_info.reverse_block;
for (Node *top_node : reverse_block->nodes()) {
JIT_ASSERT(top_node->kind() == prim::GradOf ||
top_node->kind() == prim::AutogradAdd ||
top_node->kind() == prim::Undefined);
if (top_node->kind() != prim::GradOf) continue;
Block * grad_body = top_node->blocks().at(0);
for (Node *node : grad_body->nodes()) {
for (Value * input : node->inputs()) {
if (input->node()->kind() != prim::Constant) continue;
if (input->node()->owningBlock() == grad_body) continue;
Node *lifted_constant = graph.createClone(input->node(), err);
reverse_block->prependNode(lifted_constant);
node->replaceInputWith(input, lifted_constant->output());
}
}
}
}
// Takes a grad_desc.f returned from `addReverseInline` and splits off the
// reverse_block into its own graph, storing it in df.
// All intermediates needed in the second stage are added to
// outputs of f, and taken as inputs in df. For a more
// detailed description see Note [Gradient graphs] in autodiff.h.
// This function also initializes the fields in grad_desc that were undefined after
// `addReverseInline` (and extends `df_input_vjps` with vjps for captured temporaries).
static void lambdaLiftReverse(Gradient& grad_desc, ReverseDetails& rev_info) {
auto & graph = *grad_desc.f;
auto primal_block = graph.block();
auto reverse_block = rev_info.reverse_block;
// --------------------------------------------------------------------------
// 1. Find values of f that need to be captured.
// --------------------------------------------------------------------------
// First, we need to find all values that are produced in f,
// and used in df. They will need to be added as inputs of the df
// and some of them may also need to be appended as outputs of f if
// they are not already an input or an output of f
value_set reverse_captures_set;
value_list reverse_captures; // Invariant: topo sorted
auto check_uses = [&](Value *v) {
for (auto use : v->uses()) {
if (use.user->owningBlock() == primal_block)
continue;
if (/* bool unseen = */ reverse_captures_set.emplace(v).second) {
reverse_captures.push_back(v);
}
}
};
for (Value * input : graph.inputs()) {
check_uses(input);
}
for (Node * node : graph.nodes()) {
for (Value * output : node->outputs())
check_uses(output);
}
// --------------------------------------------------------------------------
// 2. Prepare input/outputs lists for f and df
// --------------------------------------------------------------------------
// It's simple to construct primal_inputs/reverse_outputs,
// but primal_outputs/reverse_inputs are much more subtle.
// Here's a summary of how they are supposed to look like:
//
// Primal outputs:
// [original outputs], [temporaries]
//
// Reverse inputs:
// [output vjps (aka grad_outputs)], [temporary vjps]
// [captured primal values, in topological order],
// -- Construct primal_outputs, df_input_captures, f_real_outputs ----
grad_desc.f_real_outputs = graph.outputs().size();
std::unordered_map<Value*, size_t> orig_primal_outputs_idx;
std::unordered_map<Value*, size_t> orig_primal_inputs_idx;
// NOTE: we use emplace to avoid replacing an existing index if an output is repeated
for (size_t i = 0, num_outputs = graph.outputs().size(); i < num_outputs; ++i)
orig_primal_outputs_idx.emplace(graph.outputs()[i], i);
for (size_t i = 0, num_inputs = graph.inputs().size(); i < num_inputs; ++i)
orig_primal_inputs_idx[graph.inputs()[i]] = i;
// NB: reverse_captures are already deduplicated, and in topo order
for (Value * capture_val : reverse_captures) {
// If it's already an output we don't have to add anything,
// but register the fact that it needs to be captured.
if (orig_primal_outputs_idx.count(capture_val) > 0) {
grad_desc.df_input_captured_outputs.push_back(orig_primal_outputs_idx[capture_val]);
// If it's an input, we could add it as an output but in fact it's
// more efficient to use a special kind of capture.
} else if (orig_primal_inputs_idx.count(capture_val) > 0) {
grad_desc.df_input_captured_inputs.push_back(orig_primal_inputs_idx.at(capture_val));
// Otherwise it's just a regular intermediate value that we need to add as an output
} else {
// we need to create a new temporary output for this capture because it wasn't availiable.
graph.registerOutput(capture_val);
grad_desc.df_input_captured_outputs.emplace_back(graph.outputs().size() - 1);
}
}
// -- Add VJPs for temporaries, adjust df_input_vjps -------------------------
// NB [possible optimization]: use the newly added vjp input as soon as the first
// vjp for that value is generated, to reduce the lifespan of this input
// (currently we add it to the final vjp after all adds).
for (size_t i = grad_desc.f_real_outputs; i < graph.outputs().size(); ++i) {
Value * tmp = graph.outputs().at(i);
// Add VJP inputs only for intermediates that actually required grad.
if (!tmp->requires_grad()) continue;
Value * tmp_vjp_in = reverse_block->addInput()->setType(tmp->type());
Value * tmp_vjp_prev = rev_info.grad_map.at(tmp);
// This is quite weird because we can't first make a sum and then replace all uses
// of tmp_vjp_prev (that would replace its use in the sum too!), so we create an
// incorrect sum that doesn't use prev vjp, replace uses, and fix the sum.
Value * new_vjp = createAutogradAdd(tmp_vjp_in, tmp_vjp_in);
new_vjp->node()->moveAfter(tmp_vjp_prev->node());
tmp_vjp_prev->replaceAllUsesWith(new_vjp);
new_vjp->node()->replaceInput(1, tmp_vjp_prev);
grad_desc.df_input_vjps.emplace_back(i);
}
// add the captures as formal arguments to the reverse_block
// afterward inputs: [output vjps][temporary vjps][captures]
// construct a map from captured 'value' to the index in the input list
// used to extract this block into its own function
std::unordered_map<Value*, size_t> capture_to_formal_index;
const auto & add_capture = [&](Value * captured) {
capture_to_formal_index[captured] = reverse_block->inputs().size();
reverse_block->addInput()->copyMetadata(captured);
};
for(auto & offset : grad_desc.df_input_captured_inputs)
add_capture(graph.inputs()[offset]);
for(auto & offset : grad_desc.df_input_captured_outputs)
add_capture(graph.outputs()[offset]);
grad_desc.df = std::make_shared<Graph>();
grad_desc.df->block()->cloneFrom(reverse_block, [&](Value* v) {
return grad_desc.df->inputs()[capture_to_formal_index.at(v)];
});
// reverse_node was just to hold onto reverse_block in a debuggable way
// we can remove it now.
reverse_block->owningNode()->destroy();
}
Gradient differentiate(std::shared_ptr<Graph>& graph) {
Gradient grad_desc;
// Take ownership of the graph
JIT_ASSERTM(graph.use_count() == 1,
"differentiate will mutate and destroy the graph, so it requires "
"graph.use_count() == 1, but found %d", graph.use_count());
std::swap(graph, grad_desc.f);
// XXX: Take care when handling outputs - they can be duplicated!
WithInsertPoint guard(grad_desc.f->block());
// Fills in df_input_vjps and df_output_vjps
auto rev_info = addReverseInline(grad_desc);
// Lift constants captured for the reverse graph into it
liftConstants(grad_desc, rev_info);
// addReverseInline has to call gradientForNode if *any* of the outputs
// require grad, but it will emit vjps for *all* outputs. Use DCE to remove
// unnecessary nodes.
EliminateDeadCode(rev_info.reverse_block);
// Fills in f, df, f_real_outputs, df_input_captures,
// modifies df_input_vjps (new vjps are added for temporaries)
lambdaLiftReverse(grad_desc, rev_info);
// It's possible the we've cloned the same constants many times, so
// de-duplicate them
ConstantPooling(grad_desc.df);
return grad_desc;
}
}}