mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
* [fix] Re-enable events in RNN ops We have earlier added event disabling in RNN ops as back then we didn't use events, with current use cases this is no longer true (https://fburl.com/8vd0lp8y) * use ops with cude impl * Revert D7729695: [caffe2][fix] Re-enable events in RNN ops This reverts commit 4b215c7496fb724656ff4c776933a15bdbbcde5e @bypass-lint An infra SEV is better than not reverting this diff. If you copy this password, see you in SEV Review! @cause_a_sev_many_files * [observer] Clean up observer_config.h #accept2ship * [1/n] Refactor dataio_test.py Replace code duplication with a common function * Add barrier net that runs before training nets Add a synchonize barrier net that is run before training nets. With this net, shards that are faster will wait for other shards before start training. This reduce chances of the faster shards timing out during GLOO AllReduce. Removed explicit data_parallel_model.py.synchronize call in holmes workflow. Similar change in speech/asr_training workflow will come in another diff. * Support the dnnlowp backend in caffe2_benchmark This is for SHARE operator latency evaluation * Migrate integral_image_op to main caffe2 migrate integral_image_op(GPU version) given by https://fburl.com/yvqezigi to caffe2/caffe2/operators and implement its CPU version. Write up a test using the hypothesis_test mechanism * [pos_disc, fbcode] Implement unjoined lr loss As explained in https://our.intern.facebook.com/intern/wiki/Model_Based_Calibration/, when the dataset is an joined data set, where labels might change later, we need to use unjoined logloss. The implementation is almost the same as in Sigrid (https://fburl.com/1trngsls), where loss = y (log(p) - log(1-p)) + (1-y)(log(1-p)) = xy - (1-y)x - (1-y)log(1+exp(-x)) For x < 0, to ensure stability and avoid overflow, we reformulate the above exp as loss = xy - (1-y)x - (1-y)x + (1-y)log(1+exp(x)) = xy + (1-y)log(1+exp(x)) Then the final expression becomes loss = xy + (y - 1) x (x >= 0) - (1 - y) log(1 + exp(x - 2 x (x >= 0))) where y is the true label, x is the dot product and p = logistic(x). This kind of implementation is align with the current implementation of the original cross entropy in https://phabricator.intern.facebook.com/diffusion/FBS/browse/master/fbcode/caffe2/caffe2/operators/cross_entropy_op.cc;0bae3b5d0f825897c5e0dd0ff10f489d7271bf25$7-13 * Keep the array to fix the conflict * [C2] Compute Adagrad effective LR The AdagradWithLR op outputs an extra blob which is contains the average effective learning rate across all weights in this blob. * Open-source extractMetaNetDef & runGlobalInitialization, add new Predictor constructor from db file, and add run_map_outputs 1. Open-source extractMetaNetDef and runGlobalInitialization, for use in 2. new Predictor constructor from db file. 3. Add new run function that returns outputs as TensorMap * Disable eigen cpu Disable eigen cpu in transpose and reduce * Introduce request_only/object_only property of ModelLayer by default this is False * A simple TC Caffe2 benchmark We can run tunner, get MappingOptions and then use them to compare against cuBLAS currently broken due to LLVM issues. How to run: hg checkout eec1ab31b59c03b8deded1c755a9abaf8c45be01 add D7401202 add D7434625 add D7506031 add D7540728 buck run @mode/dev-nosan tc/tc/benchmarks_python:caffe2_benchmark * Move Caffe2 feature_maps_ops to open source Need feature maps operators in open source project facebookresearch/BlueWhale * Manually fix the conflicts in channel shuffle op * Fix the inconsistency between different gh and fbcode * Skip Adagrad GPU Test (Because some gpu implementation is missing) * Fix another test to make sure it won't run on gpu when implementation is not available yet
329 lines
11 KiB
Python
329 lines
11 KiB
Python
## @package utils
|
|
# Module caffe2.python.utils
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.proto import caffe2_pb2
|
|
from future.utils import viewitems
|
|
from google.protobuf.message import DecodeError, Message
|
|
from google.protobuf import text_format
|
|
|
|
import sys
|
|
import copy
|
|
import collections
|
|
import functools
|
|
import numpy as np
|
|
from six import integer_types, binary_type, text_type
|
|
|
|
|
|
def OpAlmostEqual(op_a, op_b, ignore_fields=None):
|
|
'''
|
|
Two ops are identical except for each field in the `ignore_fields`.
|
|
'''
|
|
ignore_fields = ignore_fields or []
|
|
if not isinstance(ignore_fields, list):
|
|
ignore_fields = [ignore_fields]
|
|
|
|
assert all(isinstance(f, text_type) for f in ignore_fields), (
|
|
'Expect each field is text type, but got {}'.format(ignore_fields))
|
|
|
|
def clean_op(op):
|
|
op = copy.deepcopy(op)
|
|
for field in ignore_fields:
|
|
if op.HasField(field):
|
|
op.ClearField(field)
|
|
return op
|
|
|
|
op_a = clean_op(op_a)
|
|
op_b = clean_op(op_b)
|
|
return op_a == op_b
|
|
|
|
|
|
def CaffeBlobToNumpyArray(blob):
|
|
if (blob.num != 0):
|
|
# old style caffe blob.
|
|
return (np.asarray(blob.data, dtype=np.float32)
|
|
.reshape(blob.num, blob.channels, blob.height, blob.width))
|
|
else:
|
|
# new style caffe blob.
|
|
return (np.asarray(blob.data, dtype=np.float32)
|
|
.reshape(blob.shape.dim))
|
|
|
|
|
|
def Caffe2TensorToNumpyArray(tensor):
|
|
if tensor.data_type == caffe2_pb2.TensorProto.FLOAT:
|
|
return np.asarray(
|
|
tensor.float_data, dtype=np.float32).reshape(tensor.dims)
|
|
elif tensor.data_type == caffe2_pb2.TensorProto.DOUBLE:
|
|
return np.asarray(
|
|
tensor.double_data, dtype=np.float64).reshape(tensor.dims)
|
|
elif tensor.data_type == caffe2_pb2.TensorProto.INT32:
|
|
return np.asarray(
|
|
tensor.int32_data, dtype=np.int).reshape(tensor.dims) # pb.INT32=>np.int use int32_data
|
|
elif tensor.data_type == caffe2_pb2.TensorProto.INT16:
|
|
return np.asarray(
|
|
tensor.int32_data, dtype=np.int16).reshape(tensor.dims) # pb.INT16=>np.int16 use int32_data
|
|
elif tensor.data_type == caffe2_pb2.TensorProto.UINT16:
|
|
return np.asarray(
|
|
tensor.int32_data, dtype=np.uint16).reshape(tensor.dims) # pb.UINT16=>np.uint16 use int32_data
|
|
elif tensor.data_type == caffe2_pb2.TensorProto.INT8:
|
|
return np.asarray(
|
|
tensor.int32_data, dtype=np.int8).reshape(tensor.dims) # pb.INT8=>np.int8 use int32_data
|
|
elif tensor.data_type == caffe2_pb2.TensorProto.UINT8:
|
|
return np.asarray(
|
|
tensor.int32_data, dtype=np.uint8).reshape(tensor.dims) # pb.UINT8=>np.uint8 use int32_data
|
|
else:
|
|
# TODO: complete the data type: bool, float16, byte, int64, string
|
|
raise RuntimeError(
|
|
"Tensor data type not supported yet: " + str(tensor.data_type))
|
|
|
|
|
|
def NumpyArrayToCaffe2Tensor(arr, name=None):
|
|
tensor = caffe2_pb2.TensorProto()
|
|
tensor.dims.extend(arr.shape)
|
|
if name:
|
|
tensor.name = name
|
|
if arr.dtype == np.float32:
|
|
tensor.data_type = caffe2_pb2.TensorProto.FLOAT
|
|
tensor.float_data.extend(list(arr.flatten().astype(float)))
|
|
elif arr.dtype == np.float64:
|
|
tensor.data_type = caffe2_pb2.TensorProto.DOUBLE
|
|
tensor.double_data.extend(list(arr.flatten().astype(np.float64)))
|
|
elif arr.dtype == np.int or arr.dtype == np.int32:
|
|
tensor.data_type = caffe2_pb2.TensorProto.INT32
|
|
tensor.int32_data.extend(arr.flatten().astype(np.int).tolist())
|
|
elif arr.dtype == np.int16:
|
|
tensor.data_type = caffe2_pb2.TensorProto.INT16
|
|
tensor.int32_data.extend(list(arr.flatten().astype(np.int16))) # np.int16=>pb.INT16 use int32_data
|
|
elif arr.dtype == np.uint16:
|
|
tensor.data_type = caffe2_pb2.TensorProto.UINT16
|
|
tensor.int32_data.extend(list(arr.flatten().astype(np.uint16))) # np.uint16=>pb.UNIT16 use int32_data
|
|
elif arr.dtype == np.int8:
|
|
tensor.data_type = caffe2_pb2.TensorProto.INT8
|
|
tensor.int32_data.extend(list(arr.flatten().astype(np.int8))) # np.int8=>pb.INT8 use int32_data
|
|
elif arr.dtype == np.uint8:
|
|
tensor.data_type = caffe2_pb2.TensorProto.UINT8
|
|
tensor.int32_data.extend(list(arr.flatten().astype(np.uint8))) # np.uint8=>pb.UNIT8 use int32_data
|
|
else:
|
|
# TODO: complete the data type: bool, float16, byte, int64, string
|
|
raise RuntimeError(
|
|
"Numpy data type not supported yet: " + str(arr.dtype))
|
|
return tensor
|
|
|
|
|
|
def MakeArgument(key, value):
|
|
"""Makes an argument based on the value type."""
|
|
argument = caffe2_pb2.Argument()
|
|
argument.name = key
|
|
iterable = isinstance(value, collections.Iterable)
|
|
|
|
# Fast tracking common use case where a float32 array of tensor parameters
|
|
# needs to be serialized. The entire array is guaranteed to have the same
|
|
# dtype, so no per-element checking necessary and no need to convert each
|
|
# element separately.
|
|
if isinstance(value, np.ndarray) and value.dtype.type is np.float32:
|
|
argument.floats.extend(value.flatten().tolist())
|
|
return argument
|
|
|
|
if isinstance(value, np.ndarray):
|
|
value = value.flatten().tolist()
|
|
elif isinstance(value, np.generic):
|
|
# convert numpy scalar to native python type
|
|
value = np.asscalar(value)
|
|
|
|
if type(value) is float:
|
|
argument.f = value
|
|
elif type(value) in integer_types or type(value) is bool:
|
|
# We make a relaxation that a boolean variable will also be stored as
|
|
# int.
|
|
argument.i = value
|
|
elif isinstance(value, binary_type):
|
|
argument.s = value
|
|
elif isinstance(value, text_type):
|
|
argument.s = value.encode('utf-8')
|
|
elif isinstance(value, caffe2_pb2.NetDef):
|
|
argument.n.CopyFrom(value)
|
|
elif isinstance(value, Message):
|
|
argument.s = value.SerializeToString()
|
|
elif iterable and all(type(v) in [float, np.float_] for v in value):
|
|
argument.floats.extend(
|
|
v.item() if type(v) is np.float_ else v for v in value
|
|
)
|
|
elif iterable and all(
|
|
type(v) in integer_types or type(v) in [bool, np.int_] for v in value
|
|
):
|
|
argument.ints.extend(
|
|
v.item() if type(v) is np.int_ else v for v in value
|
|
)
|
|
elif iterable and all(
|
|
isinstance(v, binary_type) or isinstance(v, text_type) for v in value
|
|
):
|
|
argument.strings.extend(
|
|
v.encode('utf-8') if isinstance(v, text_type) else v
|
|
for v in value
|
|
)
|
|
elif iterable and all(isinstance(v, caffe2_pb2.NetDef) for v in value):
|
|
argument.nets.extend(value)
|
|
elif iterable and all(isinstance(v, Message) for v in value):
|
|
argument.strings.extend(v.SerializeToString() for v in value)
|
|
else:
|
|
if iterable:
|
|
raise ValueError(
|
|
"Unknown iterable argument type: key={} value={}, value "
|
|
"type={}[{}]".format(
|
|
key, value, type(value), set(type(v) for v in value)
|
|
)
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
"Unknown argument type: key={} value={}, value type={}".format(
|
|
key, value, type(value)
|
|
)
|
|
)
|
|
return argument
|
|
|
|
|
|
def TryReadProtoWithClass(cls, s):
|
|
"""Reads a protobuffer with the given proto class.
|
|
|
|
Inputs:
|
|
cls: a protobuffer class.
|
|
s: a string of either binary or text protobuffer content.
|
|
|
|
Outputs:
|
|
proto: the protobuffer of cls
|
|
|
|
Throws:
|
|
google.protobuf.message.DecodeError: if we cannot decode the message.
|
|
"""
|
|
obj = cls()
|
|
try:
|
|
text_format.Parse(s, obj)
|
|
return obj
|
|
except text_format.ParseError:
|
|
obj.ParseFromString(s)
|
|
return obj
|
|
|
|
|
|
def GetContentFromProto(obj, function_map):
|
|
"""Gets a specific field from a protocol buffer that matches the given class
|
|
"""
|
|
for cls, func in viewitems(function_map):
|
|
if type(obj) is cls:
|
|
return func(obj)
|
|
|
|
|
|
def GetContentFromProtoString(s, function_map):
|
|
for cls, func in viewitems(function_map):
|
|
try:
|
|
obj = TryReadProtoWithClass(cls, s)
|
|
return func(obj)
|
|
except DecodeError:
|
|
continue
|
|
else:
|
|
raise DecodeError("Cannot find a fit protobuffer class.")
|
|
|
|
|
|
def ConvertProtoToBinary(proto_class, filename, out_filename):
|
|
"""Convert a text file of the given protobuf class to binary."""
|
|
proto = TryReadProtoWithClass(proto_class, open(filename).read())
|
|
with open(out_filename, 'w') as fid:
|
|
fid.write(proto.SerializeToString())
|
|
|
|
|
|
def GetGPUMemoryUsageStats():
|
|
"""Get GPU memory usage stats from CUDAContext. This requires flag
|
|
--caffe2_gpu_memory_tracking to be enabled"""
|
|
from caffe2.python import workspace, core
|
|
workspace.RunOperatorOnce(
|
|
core.CreateOperator(
|
|
"GetGPUMemoryUsage",
|
|
[],
|
|
["____mem____"],
|
|
device_option=core.DeviceOption(caffe2_pb2.CUDA, 0),
|
|
),
|
|
)
|
|
b = workspace.FetchBlob("____mem____")
|
|
return {
|
|
'total_by_gpu': b[0, :],
|
|
'max_by_gpu': b[1, :],
|
|
'total': np.sum(b[0, :]),
|
|
'max_total': np.sum(b[1, :])
|
|
}
|
|
|
|
|
|
def ResetBlobs(blobs):
|
|
from caffe2.python import workspace, core
|
|
workspace.RunOperatorOnce(
|
|
core.CreateOperator(
|
|
"Free",
|
|
list(blobs),
|
|
list(blobs),
|
|
device_option=core.DeviceOption(caffe2_pb2.CPU),
|
|
),
|
|
)
|
|
|
|
|
|
class DebugMode(object):
|
|
'''
|
|
This class allows to drop you into an interactive debugger
|
|
if there is an unhandled exception in your python script
|
|
|
|
Example of usage:
|
|
|
|
def main():
|
|
# your code here
|
|
pass
|
|
|
|
if __name__ == '__main__':
|
|
from caffe2.python.utils import DebugMode
|
|
DebugMode.run(main)
|
|
'''
|
|
|
|
@classmethod
|
|
def run(cls, func):
|
|
try:
|
|
return func()
|
|
except KeyboardInterrupt:
|
|
raise
|
|
except Exception:
|
|
import pdb
|
|
|
|
print(
|
|
'Entering interactive debugger. Type "bt" to print '
|
|
'the full stacktrace. Type "help" to see command listing.')
|
|
print(sys.exc_info()[1])
|
|
print
|
|
|
|
pdb.post_mortem()
|
|
sys.exit(1)
|
|
raise
|
|
|
|
|
|
def raiseIfNotEqual(a, b, msg):
|
|
if a != b:
|
|
raise Exception("{}. {} != {}".format(msg, a, b))
|
|
|
|
|
|
def debug(f):
|
|
'''
|
|
Use this method to decorate your function with DebugMode's functionality
|
|
|
|
Example:
|
|
|
|
@debug
|
|
def test_foo(self):
|
|
raise Exception("Bar")
|
|
|
|
'''
|
|
|
|
@functools.wraps(f)
|
|
def wrapper(*args, **kwargs):
|
|
def func():
|
|
return f(*args, **kwargs)
|
|
return DebugMode.run(func)
|
|
|
|
return wrapper
|