mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Closes https://github.com/caffe2/caffe2/pull/1260 Differential Revision: D5906739 Pulled By: Yangqing fbshipit-source-id: e482ba9ba60b5337d9165f28f7ec68d4518a0902
355 lines
10 KiB
Python
355 lines
10 KiB
Python
# Copyright (c) 2016-present, Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
##############################################################################
|
|
|
|
## @package resnet
|
|
# Module caffe2.python.models.resnet
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from caffe2.python import brew
|
|
'''
|
|
Utility for creating ResNets
|
|
See "Deep Residual Learning for Image Recognition" by He, Zhang et. al. 2015
|
|
'''
|
|
|
|
|
|
class ResNetBuilder():
|
|
'''
|
|
Helper class for constructing residual blocks.
|
|
'''
|
|
|
|
def __init__(self, model, prev_blob, no_bias, is_test, spatial_bn_mom=0.9):
|
|
self.model = model
|
|
self.comp_count = 0
|
|
self.comp_idx = 0
|
|
self.prev_blob = prev_blob
|
|
self.is_test = is_test
|
|
self.spatial_bn_mom = spatial_bn_mom
|
|
self.no_bias = 1 if no_bias else 0
|
|
|
|
def add_conv(self, in_filters, out_filters, kernel, stride=1, pad=0):
|
|
self.comp_idx += 1
|
|
self.prev_blob = brew.conv(
|
|
self.model,
|
|
self.prev_blob,
|
|
'comp_%d_conv_%d' % (self.comp_count, self.comp_idx),
|
|
in_filters,
|
|
out_filters,
|
|
weight_init=("MSRAFill", {}),
|
|
kernel=kernel,
|
|
stride=stride,
|
|
pad=pad,
|
|
no_bias=self.no_bias,
|
|
)
|
|
return self.prev_blob
|
|
|
|
def add_relu(self):
|
|
self.prev_blob = brew.relu(
|
|
self.model,
|
|
self.prev_blob,
|
|
self.prev_blob, # in-place
|
|
)
|
|
return self.prev_blob
|
|
|
|
def add_spatial_bn(self, num_filters):
|
|
self.prev_blob = brew.spatial_bn(
|
|
self.model,
|
|
self.prev_blob,
|
|
'comp_%d_spatbn_%d' % (self.comp_count, self.comp_idx),
|
|
num_filters,
|
|
epsilon=1e-3,
|
|
momentum=self.spatial_bn_mom,
|
|
is_test=self.is_test,
|
|
)
|
|
return self.prev_blob
|
|
|
|
'''
|
|
Add a "bottleneck" component as decribed in He et. al. Figure 3 (right)
|
|
'''
|
|
|
|
def add_bottleneck(
|
|
self,
|
|
input_filters, # num of feature maps from preceding layer
|
|
base_filters, # num of filters internally in the component
|
|
output_filters, # num of feature maps to output
|
|
down_sampling=False,
|
|
spatial_batch_norm=True,
|
|
):
|
|
self.comp_idx = 0
|
|
shortcut_blob = self.prev_blob
|
|
|
|
# 1x1
|
|
self.add_conv(
|
|
input_filters,
|
|
base_filters,
|
|
kernel=1,
|
|
stride=1
|
|
)
|
|
|
|
if spatial_batch_norm:
|
|
self.add_spatial_bn(base_filters)
|
|
|
|
self.add_relu()
|
|
|
|
# 3x3 (note the pad, required for keeping dimensions)
|
|
self.add_conv(
|
|
base_filters,
|
|
base_filters,
|
|
kernel=3,
|
|
stride=(1 if down_sampling is False else 2),
|
|
pad=1
|
|
)
|
|
|
|
if spatial_batch_norm:
|
|
self.add_spatial_bn(base_filters)
|
|
self.add_relu()
|
|
|
|
# 1x1
|
|
last_conv = self.add_conv(base_filters, output_filters, kernel=1)
|
|
if spatial_batch_norm:
|
|
last_conv = self.add_spatial_bn(output_filters)
|
|
|
|
# Summation with input signal (shortcut)
|
|
# If we need to increase dimensions (feature maps), need to
|
|
# do a projection for the short cut
|
|
if (output_filters > input_filters):
|
|
shortcut_blob = brew.conv(
|
|
self.model,
|
|
shortcut_blob,
|
|
'shortcut_projection_%d' % self.comp_count,
|
|
input_filters,
|
|
output_filters,
|
|
weight_init=("MSRAFill", {}),
|
|
kernel=1,
|
|
stride=(1 if down_sampling is False else 2),
|
|
no_bias=self.no_bias,
|
|
)
|
|
if spatial_batch_norm:
|
|
shortcut_blob = brew.spatial_bn(
|
|
self.model,
|
|
shortcut_blob,
|
|
'shortcut_projection_%d_spatbn' % self.comp_count,
|
|
output_filters,
|
|
epsilon=1e-3,
|
|
momentum=self.spatial_bn_mom,
|
|
is_test=self.is_test,
|
|
)
|
|
|
|
self.prev_blob = brew.sum(
|
|
self.model, [shortcut_blob, last_conv],
|
|
'comp_%d_sum_%d' % (self.comp_count, self.comp_idx)
|
|
)
|
|
self.comp_idx += 1
|
|
self.add_relu()
|
|
|
|
# Keep track of number of high level components if this ResNetBuilder
|
|
self.comp_count += 1
|
|
|
|
def add_simple_block(
|
|
self,
|
|
input_filters,
|
|
num_filters,
|
|
down_sampling=False,
|
|
spatial_batch_norm=True
|
|
):
|
|
self.comp_idx = 0
|
|
shortcut_blob = self.prev_blob
|
|
|
|
# 3x3
|
|
self.add_conv(
|
|
input_filters,
|
|
num_filters,
|
|
kernel=3,
|
|
stride=(1 if down_sampling is False else 2),
|
|
pad=1
|
|
)
|
|
|
|
if spatial_batch_norm:
|
|
self.add_spatial_bn(num_filters)
|
|
self.add_relu()
|
|
|
|
last_conv = self.add_conv(num_filters, num_filters, kernel=3, pad=1)
|
|
if spatial_batch_norm:
|
|
last_conv = self.add_spatial_bn(num_filters)
|
|
|
|
# Increase of dimensions, need a projection for the shortcut
|
|
if (num_filters != input_filters):
|
|
shortcut_blob = brew.conv(
|
|
self.model,
|
|
shortcut_blob,
|
|
'shortcut_projection_%d' % self.comp_count,
|
|
input_filters,
|
|
num_filters,
|
|
weight_init=("MSRAFill", {}),
|
|
kernel=1,
|
|
stride=(1 if down_sampling is False else 2),
|
|
no_bias=self.no_bias,
|
|
)
|
|
if spatial_batch_norm:
|
|
shortcut_blob = brew.spatial_bn(
|
|
self.model,
|
|
shortcut_blob,
|
|
'shortcut_projection_%d_spatbn' % self.comp_count,
|
|
num_filters,
|
|
epsilon=1e-3,
|
|
is_test=self.is_test,
|
|
)
|
|
|
|
self.prev_blob = brew.sum(
|
|
self.model, [shortcut_blob, last_conv],
|
|
'comp_%d_sum_%d' % (self.comp_count, self.comp_idx)
|
|
)
|
|
self.comp_idx += 1
|
|
self.add_relu()
|
|
|
|
# Keep track of number of high level components if this ResNetBuilder
|
|
self.comp_count += 1
|
|
|
|
|
|
# The conv1 and final_avg kernel/stride args provide a basic mechanism for
|
|
# adapting resnet50 for different sizes of input images.
|
|
def create_resnet50(
|
|
model,
|
|
data,
|
|
num_input_channels,
|
|
num_labels,
|
|
label=None,
|
|
is_test=False,
|
|
no_loss=False,
|
|
no_bias=0,
|
|
conv1_kernel=7,
|
|
conv1_stride=2,
|
|
final_avg_kernel=7,
|
|
):
|
|
# conv1 + maxpool
|
|
brew.conv(
|
|
model,
|
|
data,
|
|
'conv1',
|
|
num_input_channels,
|
|
64,
|
|
weight_init=("MSRAFill", {}),
|
|
kernel=conv1_kernel,
|
|
stride=conv1_stride,
|
|
pad=3,
|
|
no_bias=no_bias
|
|
)
|
|
|
|
brew.spatial_bn(
|
|
model,
|
|
'conv1',
|
|
'conv1_spatbn_relu',
|
|
64,
|
|
epsilon=1e-3,
|
|
momentum=0.1,
|
|
is_test=is_test
|
|
)
|
|
brew.relu(model, 'conv1_spatbn_relu', 'conv1_spatbn_relu')
|
|
brew.max_pool(model, 'conv1_spatbn_relu', 'pool1', kernel=3, stride=2)
|
|
|
|
# Residual blocks...
|
|
builder = ResNetBuilder(model, 'pool1', no_bias=no_bias,
|
|
is_test=is_test, spatial_bn_mom=0.1)
|
|
|
|
# conv2_x (ref Table 1 in He et al. (2015))
|
|
builder.add_bottleneck(64, 64, 256)
|
|
builder.add_bottleneck(256, 64, 256)
|
|
builder.add_bottleneck(256, 64, 256)
|
|
|
|
# conv3_x
|
|
builder.add_bottleneck(256, 128, 512, down_sampling=True)
|
|
for _ in range(1, 4):
|
|
builder.add_bottleneck(512, 128, 512)
|
|
|
|
# conv4_x
|
|
builder.add_bottleneck(512, 256, 1024, down_sampling=True)
|
|
for _ in range(1, 6):
|
|
builder.add_bottleneck(1024, 256, 1024)
|
|
|
|
# conv5_x
|
|
builder.add_bottleneck(1024, 512, 2048, down_sampling=True)
|
|
builder.add_bottleneck(2048, 512, 2048)
|
|
builder.add_bottleneck(2048, 512, 2048)
|
|
|
|
# Final layers
|
|
final_avg = brew.average_pool(
|
|
model,
|
|
builder.prev_blob,
|
|
'final_avg',
|
|
kernel=final_avg_kernel,
|
|
stride=1,
|
|
)
|
|
|
|
# Final dimension of the "image" is reduced to 7x7
|
|
last_out = brew.fc(
|
|
model, final_avg, 'last_out_L{}'.format(num_labels), 2048, num_labels
|
|
)
|
|
|
|
if no_loss:
|
|
return last_out
|
|
|
|
# If we create model for training, use softmax-with-loss
|
|
if (label is not None):
|
|
(softmax, loss) = model.SoftmaxWithLoss(
|
|
[last_out, label],
|
|
["softmax", "loss"],
|
|
)
|
|
|
|
return (softmax, loss)
|
|
else:
|
|
# For inference, we just return softmax
|
|
return brew.softmax(model, last_out, "softmax")
|
|
|
|
|
|
def create_resnet_32x32(
|
|
model, data, num_input_channels, num_groups, num_labels, is_test=False
|
|
):
|
|
'''
|
|
Create residual net for smaller images (sec 4.2 of He et. al (2015))
|
|
num_groups = 'n' in the paper
|
|
'''
|
|
# conv1 + maxpool
|
|
brew.conv(
|
|
model, data, 'conv1', num_input_channels, 16, kernel=3, stride=1
|
|
)
|
|
brew.spatial_bn(
|
|
model, 'conv1', 'conv1_spatbn', 16, epsilon=1e-3, is_test=is_test
|
|
)
|
|
brew.relu(model, 'conv1_spatbn', 'relu1')
|
|
|
|
# Number of blocks as described in sec 4.2
|
|
filters = [16, 32, 64]
|
|
|
|
builder = ResNetBuilder(model, 'relu1', is_test=is_test)
|
|
prev_filters = 16
|
|
for groupidx in range(0, 3):
|
|
for blockidx in range(0, 2 * num_groups):
|
|
builder.add_simple_block(
|
|
prev_filters if blockidx == 0 else filters[groupidx],
|
|
filters[groupidx],
|
|
down_sampling=(True if blockidx == 0 and
|
|
groupidx > 0 else False))
|
|
prev_filters = filters[groupidx]
|
|
|
|
# Final layers
|
|
brew.average_pool(
|
|
model, builder.prev_blob, 'final_avg', kernel=8, stride=1
|
|
)
|
|
brew.fc(model, 'final_avg', 'last_out', 64, num_labels)
|
|
softmax = brew.softmax(model, 'last_out', 'softmax')
|
|
return softmax
|