mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Closes https://github.com/caffe2/caffe2/pull/1260 Differential Revision: D5906739 Pulled By: Yangqing fbshipit-source-id: e482ba9ba60b5337d9165f28f7ec68d4518a0902
66 lines
2.2 KiB
Python
66 lines
2.2 KiB
Python
# Copyright (c) 2016-present, Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
##############################################################################
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import core, dyndep
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
|
|
from hypothesis import given
|
|
import hypothesis.strategies as st
|
|
import numpy as np
|
|
|
|
dyndep.InitOpsLibrary('@/caffe2/caffe2/contrib/torch:th_ops')
|
|
|
|
|
|
try:
|
|
dyndep.InitOpsLibrary('@/caffe2/caffe2/contrib/torch:th_ops_gpu')
|
|
HAS_GPU = True
|
|
except Exception as e:
|
|
print("Exception loading Torch GPU library: ", e)
|
|
# GPU import can fail, as Torch is not using cuda-lazy
|
|
HAS_GPU = False
|
|
pass
|
|
|
|
|
|
class THOpsTest(hu.HypothesisTestCase):
|
|
@given(X=hu.tensor(),
|
|
alpha=st.floats(min_value=0.1, max_value=2.0),
|
|
in_place=st.booleans(),
|
|
**(hu.gcs if HAS_GPU else hu.gcs_cpu_only))
|
|
def test_elu(self, X, alpha, in_place, gc, dc):
|
|
op = core.CreateOperator(
|
|
"ELU",
|
|
["X"],
|
|
["X" if in_place else "Y"],
|
|
engine="THNN",
|
|
alpha=alpha)
|
|
self.assertDeviceChecks(dc, op, [X], [0])
|
|
|
|
def elu(X):
|
|
Y = np.copy(X)
|
|
Y[Y <= 0] = (np.exp(Y[Y <= 0]) - 1) * alpha
|
|
return (Y,)
|
|
|
|
self.assertReferenceChecks(gc, op, [X], elu)
|
|
# Avoid the nonlinearity at 0 for gradient checker.
|
|
X[X == 0] += 0.2
|
|
X[np.abs(X) < 0.2] += np.sign(X[np.abs(X) < 0.2])
|
|
assert len(X[np.abs(X) < 0.2]) == 0
|
|
self.assertGradientChecks(gc, op, [X], 0, [0])
|