mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: This PR is a large codemod to rewrite all C++ API tests with GoogleTest (gtest) instead of Catch. You can largely trust me to have correctly code-modded the tests, so it's not required to review every of the 2000+ changed lines. However, additional things I changed were: 1. Moved the cmake parts for these tests into their own `CMakeLists.txt` under `test/cpp/api` and calling `add_subdirectory` from `torch/CMakeLists.txt` 2. Fixing DataParallel tests which weren't being compiled because `USE_CUDA` wasn't correctly being set at all. 3. Updated README ezyang ebetica Pull Request resolved: https://github.com/pytorch/pytorch/pull/11953 Differential Revision: D9998883 Pulled By: goldsborough fbshipit-source-id: affe3f320b0ca63e7e0019926a59076bb943db80
54 lines
1.4 KiB
C++
54 lines
1.4 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <torch/nn/init.h>
|
|
#include <torch/nn/modules/linear.h>
|
|
#include <torch/tensor.h>
|
|
#include <torch/utils.h>
|
|
|
|
#include <test/cpp/api/support.h>
|
|
|
|
TEST(NoGradTest, SetsGradModeCorrectly) {
|
|
torch::manual_seed(0);
|
|
torch::NoGradGuard guard;
|
|
torch::nn::Linear model(5, 2);
|
|
auto x = torch::randn({10, 5}, torch::requires_grad());
|
|
auto y = model->forward(x);
|
|
torch::Tensor s = y.sum();
|
|
|
|
s.backward();
|
|
ASSERT_FALSE(model->parameters()["weight"].grad().defined());
|
|
}
|
|
|
|
struct AutogradTest : torch::test::SeedingFixture {
|
|
AutogradTest() {
|
|
x = torch::randn({3, 3}, torch::requires_grad());
|
|
y = torch::randn({3, 3});
|
|
z = x * y;
|
|
}
|
|
torch::Tensor x, y, z;
|
|
};
|
|
|
|
TEST_F(AutogradTest, CanTakeDerivatives) {
|
|
z.backward();
|
|
ASSERT_TRUE(x.grad().allclose(y));
|
|
}
|
|
|
|
TEST_F(AutogradTest, CanTakeDerivativesOfZeroDimTensors) {
|
|
z.sum().backward();
|
|
ASSERT_TRUE(x.grad().allclose(y));
|
|
}
|
|
|
|
TEST_F(AutogradTest, CanPassCustomGradientInputs) {
|
|
z.sum().backward(torch::ones({}) * 2);
|
|
ASSERT_TRUE(x.grad().allclose(y * 2));
|
|
}
|
|
|
|
TEST(NNInitTest, CanInitializeTensorThatRequiresGrad) {
|
|
auto tensor = torch::empty({3, 4}, torch::requires_grad());
|
|
ASSERT_THROWS_WITH(
|
|
tensor.fill_(1),
|
|
"a leaf Variable that requires grad "
|
|
"has been used in an in-place operation");
|
|
ASSERT_EQ(torch::nn::init::ones_(tensor).sum().toCInt(), 12);
|
|
}
|