pytorch/benchmarks
Driss Guessous 1d9e1fca97 Update sdp dispatch logic to enable fused backward (#89154)
# Summary
Reorganizes how the sdp dispatch logic is down in order to enable backwards for fused kernels

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89154
Approved by: https://github.com/cpuhrsch
2022-11-21 20:02:09 +00:00
..
cpp [NVFuser] Upstream push 1026 (#87779) 2022-11-04 20:04:34 +00:00
distributed Fix typos under benchmarks, test, and tools directories (#87975) 2022-10-29 01:26:17 +00:00
dynamo Port torchdynamo's torchbench script to userbenchmark (#89239) 2022-11-21 17:25:28 +00:00
fastrnns [libkineto] Re-enable user-annotations in PyTorch (#75601) 2022-04-26 23:54:22 +00:00
framework_overhead_benchmark
functional_autograd_benchmark Added functorch to functional_autograd_benchmark 2022-04-22 14:04:26 +00:00
fuser Benchmarks for various fusers (#67622) 2021-11-04 18:57:17 -07:00
instruction_counts Fix typos under benchmarks, test, and tools directories (#87975) 2022-10-29 01:26:17 +00:00
nested Use tensor cores for NT bmm (#86856) 2022-11-02 21:51:40 +00:00
operator_benchmark Fix typos under benchmarks, test, and tools directories (#87975) 2022-10-29 01:26:17 +00:00
overrides_benchmark Use classmethods for overrides (#64841) 2021-09-17 08:32:49 -07:00
profiler_benchmark
record_function_benchmark
serialization
sparse
static_runtime Revive static_runtime_benchmark build and test (#87660) 2022-11-08 08:32:45 +00:00
tensorexpr Fix some typos. 2022-04-11 21:55:59 +00:00
transformer Update sdp dispatch logic to enable fused backward (#89154) 2022-11-21 20:02:09 +00:00
compare-fastrnn-results.py
compare.sh
README.md
upload_scribe.py

PyTorch Benchmarks

This folder contains scripts that produce reproducible timings of various PyTorch features.

It also provides mechanisms to compare PyTorch with other frameworks.

Setup environment

Make sure you're on a machine with CUDA, torchvision, and pytorch installed. Install in the following order:

# Install torchvision. It comes with the pytorch stable release binary
conda install pytorch torchvision -c pytorch

# Install the latest pytorch master from source.
# It should supersede the installation from the release binary.
cd $PYTORCH_HOME
python setup.py build develop

# Check the pytorch installation version
python -c "import torch; print(torch.__version__)"

Benchmark List

Please refer to each subfolder to discover each benchmark suite