pytorch/caffe2/python/operator_test/pooling_test.py
Di Yu 82198831e7 Fix pool op custom path issue 2, wrongful routing to global pooling
Summary:
In D5681122 - when routing to global maxpool and average pool, the condition is not correct.
see T24876217 for discussion

Reviewed By: Yangqing

Differential Revision: D6665466

fbshipit-source-id: dcb5b4686249e6ee8e1e976ab66b003ef09b32fd
2018-01-09 00:54:45 -08:00

388 lines
15 KiB
Python

# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from hypothesis import assume, given, settings
import hypothesis.strategies as st
import os
import unittest
from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu
class TestPooling(hu.HypothesisTestCase):
# CUDNN does NOT support different padding values and we skip it
@given(stride_h=st.integers(1, 3),
stride_w=st.integers(1, 3),
pad_t=st.integers(0, 3),
pad_l=st.integers(0, 3),
pad_b=st.integers(0, 3),
pad_r=st.integers(0, 3),
kernel=st.integers(3, 5),
size=st.integers(7, 9),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
op_type=st.sampled_from(["MaxPool", "AveragePool", "LpPool",
"MaxPool2D", "AveragePool2D"]),
**hu.gcs)
def test_pooling_separate_stride_pad(self, stride_h, stride_w,
pad_t, pad_l, pad_b,
pad_r, kernel, size,
input_channels,
batch_size, order,
op_type,
gc, dc):
assume(np.max([pad_t, pad_l, pad_b, pad_r]) < kernel)
op = core.CreateOperator(
op_type,
["X"],
["Y"],
stride_h=stride_h,
stride_w=stride_w,
pad_t=pad_t,
pad_l=pad_l,
pad_b=pad_b,
pad_r=pad_r,
kernel=kernel,
order=order,
)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32)
if order == "NCHW":
X = X.transpose((0, 3, 1, 2))
self.assertDeviceChecks(dc, op, [X], [0])
if 'MaxPool' not in op_type:
self.assertGradientChecks(gc, op, [X], 0, [0])
# This test is to check if CUDNN works for bigger batch size or not
@unittest.skipIf(not os.getenv('CAFFE2_DEBUG'),
"This is a test that reproduces a cudnn error. If you "
"want to run it, set env variable CAFFE2_DEBUG=1.")
@given(**hu.gcs_gpu_only)
def test_pooling_big_batch(self, gc, dc):
op = core.CreateOperator(
"AveragePool",
["X"],
["Y"],
stride=1,
kernel=7,
pad=0,
order="NHWC",
engine="CUDNN",
)
X = np.random.rand(70000, 7, 7, 81).astype(np.float32)
self.assertDeviceChecks(dc, op, [X], [0])
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(1, 5),
size=st.integers(7, 9),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
op_type=st.sampled_from(["MaxPool", "AveragePool",
"MaxPool1D", "AveragePool1D"]),
**hu.gcs)
def test_pooling_1d(self, stride, pad, kernel, size, input_channels,
batch_size, order, op_type, gc, dc):
assume(pad < kernel)
op = core.CreateOperator(
op_type,
["X"],
["Y"],
strides=[stride],
kernels=[kernel],
pads=[pad, pad],
order=order,
engine="",
)
X = np.random.rand(
batch_size, size, input_channels).astype(np.float32)
if order == "NCHW":
X = X.transpose((0, 2, 1))
self.assertDeviceChecks(dc, op, [X], [0])
if 'MaxPool' not in op_type:
self.assertGradientChecks(gc, op, [X], 0, [0])
@given(stride=st.integers(1, 3),
pad=st.integers(0, 2),
kernel=st.integers(1, 6),
size=st.integers(3, 5),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
op_type=st.sampled_from(["MaxPool", "AveragePool",
"MaxPool3D", "AveragePool3D"]),
engine=st.sampled_from(["", "CUDNN"]),
**hu.gcs)
def test_pooling_3d(self, stride, pad, kernel, size, input_channels,
batch_size, order, op_type, engine, gc, dc):
assume(pad < kernel)
assume(size + pad + pad >= kernel)
# some case here could be calculated with global pooling, but instead
# calculated with general implementation, slower but should still
# be corect.
op = core.CreateOperator(
op_type,
["X"],
["Y"],
strides=[stride] * 3,
kernels=[kernel] * 3,
pads=[pad] * 6,
order=order,
engine=engine,
)
X = np.random.rand(
batch_size, size, size, size, input_channels).astype(np.float32)
if order == "NCHW":
X = X.transpose((0, 4, 1, 2, 3))
self.assertDeviceChecks(dc, op, [X], [0], threshold=0.001)
if 'MaxPool' not in op_type:
self.assertDeviceChecks(dc, op, [X], [0], threshold=0.001)
@given(stride=st.integers(1, 3),
pad=st.integers(0, 2),
kernel=st.integers(1, 6),
size=st.integers(3, 5),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
op_type=st.sampled_from(["MaxPool", "AveragePool",
"MaxPool3D", "AveragePool3D"]),
engine=st.sampled_from(["", "CUDNN"]),
**hu.gcs)
def test_global_pooling_3d(self, stride, pad, kernel, size, input_channels,
batch_size, order, op_type, engine, gc, dc):
assume(pad < kernel)
assume(size + pad + pad >= kernel)
# Used to determine if we can use global pooling for average or max pooling
# the assumptions here are:
# 1. kernel can be greater than input dim, but always smaller than dim + pads
# on both sides, ie.
# dim.H + pad_t + pad_b >= kernel.H
# dim.W + pad_l + pad_r >= kernel.W
# dim.D + pad_f + pad_e >= kernel.D (f = front e = end)
# 2. padding applied to both sides of the input dim
# 3. pooling are applied by first align kernel with one side of padding, then
# shifting kernel for a stride distance towards the other side of padding
# 4. kernel continue shifts by stride distance until when one more stride is
# applied, kernel will go beyond input dim plus padding.
# So it is possible if stride value is large, some input dim elements will
# not be covered. consider these cases:
#
# case 1:
# kernel = 4, dim = 3, pad_l = 2, pad_r = 2, stride = 4
# when kernel is applied for the first time, pad_l and dim upto 2
# is covered then we have 1 unit left of dim and pad_r not covered, but
# because stride is 4, shift kernel by 4 will go beyond pad_r, we should not
# apply another kernel, the out_size will be 1, and some element (last of
# dim) is ignored, therefore we can not use global pooling
#
# case 2:
# k = 4, dim = 3, pad_l = 1, pad_r = 2, stride = 1
# after kernel applied first time, pad_l and dim and 1st pad_r element all
# covered, shift kernel by stride move it to the end of pad_r, covering dim +
# pad_r, not beyond pad_r, so we should apply the kernel for a second time.
# out_size = 2 and we should not use global pooling either because dim is
# covered twice.
#
# case 3:
# k = 4, dim = 3, pad_l = 1, pad_r = 1, stride = 2
# first kernel apply cover all dim, but can not shift by stride because
# kernel go beyond pad_r so kernel is only applied once and cover entire dim
# this is the only case we can use global pooling.
#
# Summary: use global pooling when all dim is covered and only covered once
assume(kernel >= size)
assume(kernel + stride > size + pad + pad)
op = core.CreateOperator(
op_type,
["X"],
["Y"],
kernels=[kernel] * 3,
order=order,
global_pooling=True,
engine=engine,
)
X = np.random.rand(
batch_size, size, size, size, input_channels).astype(np.float32)
if order == "NCHW":
X = X.transpose((0, 4, 1, 2, 3))
self.assertDeviceChecks(dc, op, [X], [0], threshold=0.001)
if 'MaxPool' not in op_type:
self.assertDeviceChecks(dc, op, [X], [0], threshold=0.001)
@unittest.skipIf(not workspace.has_gpu_support, "No GPU support")
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(1, 5),
size=st.integers(7, 9),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
**hu.gcs_gpu_only)
def test_pooling_with_index(self, stride, pad, kernel, size,
input_channels, batch_size, gc, dc):
assume(pad < kernel)
op = core.CreateOperator(
"MaxPoolWithIndex",
["X"],
["Y", "Y_index"],
stride=stride,
kernel=kernel,
pad=pad,
order="NCHW",
deterministic=1,
)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32)
# transpose due to order = NCHW
X = X.transpose((0, 3, 1, 2))
self.assertDeviceChecks(dc, op, [X], [0])
@given(sz=st.integers(1, 20),
batch_size=st.integers(1, 4),
engine=st.sampled_from(["", "CUDNN"]),
op_type=st.sampled_from(["AveragePool", "AveragePool2D"]),
**hu.gcs)
@settings(max_examples=3, timeout=10)
def test_global_avg_pool_nchw(self, op_type, sz, batch_size, engine, gc, dc):
''' Special test to stress the fast path of NCHW average pool '''
op = core.CreateOperator(
op_type,
["X"],
["Y"],
stride=1,
kernel=sz,
pad=0,
order="NCHW",
engine=engine,
)
X = np.random.rand(
batch_size, 3, sz, sz).astype(np.float32)
self.assertDeviceChecks(dc, op, [X], [0])
self.assertGradientChecks(gc, op, [X], 0, [0])
@given(sz=st.integers(1, 20),
batch_size=st.integers(1, 4),
engine=st.sampled_from(["", "CUDNN"]),
op_type=st.sampled_from(["MaxPool", "MaxPool2D"]),
**hu.gcs)
@settings(max_examples=3, timeout=10)
def test_global_max_pool_nchw(self, op_type, sz,
batch_size, engine, gc, dc):
''' Special test to stress the fast path of NCHW max pool '''
# CuDNN 5 does not support deterministic max pooling.
assume(workspace.GetCuDNNVersion() >= 6000 or engine != "CUDNN")
op = core.CreateOperator(
op_type,
["X"],
["Y"],
stride=1,
kernel=sz,
pad=0,
order="NCHW",
engine=engine,
deterministic=1,
)
np.random.seed(1234)
X = np.random.rand(
batch_size, 3, sz, sz).astype(np.float32)
self.assertDeviceChecks(dc, op, [X], [0])
self.assertGradientChecks(gc, op, [X], 0, [0], stepsize=1e-4)
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(1, 5),
size=st.integers(7, 9),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
op_type=st.sampled_from(["MaxPool", "AveragePool", "LpPool",
"MaxPool2D", "AveragePool2D"]),
engine=st.sampled_from(["", "CUDNN"]),
**hu.gcs)
def test_pooling(self, stride, pad, kernel, size,
input_channels, batch_size,
order, op_type, engine, gc, dc):
assume(pad < kernel)
op = core.CreateOperator(
op_type,
["X"],
["Y"],
stride=stride,
kernel=kernel,
pad=pad,
order=order,
engine=engine,
)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32)
if order == "NCHW":
X = X.transpose((0, 3, 1, 2))
self.assertDeviceChecks(dc, op, [X], [0])
if 'MaxPool' not in op_type:
self.assertGradientChecks(gc, op, [X], 0, [0])
@given(size=st.integers(7, 9),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
op_type=st.sampled_from(["MaxPool", "AveragePool", "LpPool"]),
engine=st.sampled_from(["", "CUDNN"]),
**hu.gcs)
def test_global_pooling(self, size, input_channels, batch_size,
order, op_type, engine, gc, dc):
# CuDNN 5 does not support deterministic max pooling.
assume(workspace.GetCuDNNVersion() >= 6000 or op_type != "MaxPool")
op = core.CreateOperator(
op_type,
["X"],
["Y"],
order=order,
engine=engine,
global_pooling=True,
)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32)
if order == "NCHW":
X = X.transpose((0, 3, 1, 2))
self.assertDeviceChecks(dc, op, [X], [0])
if 'MaxPool' not in op_type:
self.assertGradientChecks(gc, op, [X], 0, [0])
if __name__ == "__main__":
import unittest
unittest.main()