mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: In D5681122 - when routing to global maxpool and average pool, the condition is not correct. see T24876217 for discussion Reviewed By: Yangqing Differential Revision: D6665466 fbshipit-source-id: dcb5b4686249e6ee8e1e976ab66b003ef09b32fd
388 lines
15 KiB
Python
388 lines
15 KiB
Python
# Copyright (c) 2016-present, Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
##############################################################################
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
from hypothesis import assume, given, settings
|
|
import hypothesis.strategies as st
|
|
import os
|
|
import unittest
|
|
|
|
from caffe2.python import core, workspace
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
|
|
|
|
class TestPooling(hu.HypothesisTestCase):
|
|
# CUDNN does NOT support different padding values and we skip it
|
|
@given(stride_h=st.integers(1, 3),
|
|
stride_w=st.integers(1, 3),
|
|
pad_t=st.integers(0, 3),
|
|
pad_l=st.integers(0, 3),
|
|
pad_b=st.integers(0, 3),
|
|
pad_r=st.integers(0, 3),
|
|
kernel=st.integers(3, 5),
|
|
size=st.integers(7, 9),
|
|
input_channels=st.integers(1, 3),
|
|
batch_size=st.integers(1, 3),
|
|
order=st.sampled_from(["NCHW", "NHWC"]),
|
|
op_type=st.sampled_from(["MaxPool", "AveragePool", "LpPool",
|
|
"MaxPool2D", "AveragePool2D"]),
|
|
**hu.gcs)
|
|
def test_pooling_separate_stride_pad(self, stride_h, stride_w,
|
|
pad_t, pad_l, pad_b,
|
|
pad_r, kernel, size,
|
|
input_channels,
|
|
batch_size, order,
|
|
op_type,
|
|
gc, dc):
|
|
assume(np.max([pad_t, pad_l, pad_b, pad_r]) < kernel)
|
|
|
|
op = core.CreateOperator(
|
|
op_type,
|
|
["X"],
|
|
["Y"],
|
|
stride_h=stride_h,
|
|
stride_w=stride_w,
|
|
pad_t=pad_t,
|
|
pad_l=pad_l,
|
|
pad_b=pad_b,
|
|
pad_r=pad_r,
|
|
kernel=kernel,
|
|
order=order,
|
|
)
|
|
X = np.random.rand(
|
|
batch_size, size, size, input_channels).astype(np.float32)
|
|
|
|
if order == "NCHW":
|
|
X = X.transpose((0, 3, 1, 2))
|
|
self.assertDeviceChecks(dc, op, [X], [0])
|
|
if 'MaxPool' not in op_type:
|
|
self.assertGradientChecks(gc, op, [X], 0, [0])
|
|
|
|
# This test is to check if CUDNN works for bigger batch size or not
|
|
@unittest.skipIf(not os.getenv('CAFFE2_DEBUG'),
|
|
"This is a test that reproduces a cudnn error. If you "
|
|
"want to run it, set env variable CAFFE2_DEBUG=1.")
|
|
@given(**hu.gcs_gpu_only)
|
|
def test_pooling_big_batch(self, gc, dc):
|
|
op = core.CreateOperator(
|
|
"AveragePool",
|
|
["X"],
|
|
["Y"],
|
|
stride=1,
|
|
kernel=7,
|
|
pad=0,
|
|
order="NHWC",
|
|
engine="CUDNN",
|
|
)
|
|
X = np.random.rand(70000, 7, 7, 81).astype(np.float32)
|
|
|
|
self.assertDeviceChecks(dc, op, [X], [0])
|
|
|
|
@given(stride=st.integers(1, 3),
|
|
pad=st.integers(0, 3),
|
|
kernel=st.integers(1, 5),
|
|
size=st.integers(7, 9),
|
|
input_channels=st.integers(1, 3),
|
|
batch_size=st.integers(1, 3),
|
|
order=st.sampled_from(["NCHW", "NHWC"]),
|
|
op_type=st.sampled_from(["MaxPool", "AveragePool",
|
|
"MaxPool1D", "AveragePool1D"]),
|
|
**hu.gcs)
|
|
def test_pooling_1d(self, stride, pad, kernel, size, input_channels,
|
|
batch_size, order, op_type, gc, dc):
|
|
assume(pad < kernel)
|
|
op = core.CreateOperator(
|
|
op_type,
|
|
["X"],
|
|
["Y"],
|
|
strides=[stride],
|
|
kernels=[kernel],
|
|
pads=[pad, pad],
|
|
order=order,
|
|
engine="",
|
|
)
|
|
X = np.random.rand(
|
|
batch_size, size, input_channels).astype(np.float32)
|
|
if order == "NCHW":
|
|
X = X.transpose((0, 2, 1))
|
|
|
|
self.assertDeviceChecks(dc, op, [X], [0])
|
|
if 'MaxPool' not in op_type:
|
|
self.assertGradientChecks(gc, op, [X], 0, [0])
|
|
|
|
@given(stride=st.integers(1, 3),
|
|
pad=st.integers(0, 2),
|
|
kernel=st.integers(1, 6),
|
|
size=st.integers(3, 5),
|
|
input_channels=st.integers(1, 3),
|
|
batch_size=st.integers(1, 3),
|
|
order=st.sampled_from(["NCHW", "NHWC"]),
|
|
op_type=st.sampled_from(["MaxPool", "AveragePool",
|
|
"MaxPool3D", "AveragePool3D"]),
|
|
engine=st.sampled_from(["", "CUDNN"]),
|
|
**hu.gcs)
|
|
def test_pooling_3d(self, stride, pad, kernel, size, input_channels,
|
|
batch_size, order, op_type, engine, gc, dc):
|
|
assume(pad < kernel)
|
|
assume(size + pad + pad >= kernel)
|
|
# some case here could be calculated with global pooling, but instead
|
|
# calculated with general implementation, slower but should still
|
|
# be corect.
|
|
op = core.CreateOperator(
|
|
op_type,
|
|
["X"],
|
|
["Y"],
|
|
strides=[stride] * 3,
|
|
kernels=[kernel] * 3,
|
|
pads=[pad] * 6,
|
|
order=order,
|
|
engine=engine,
|
|
)
|
|
X = np.random.rand(
|
|
batch_size, size, size, size, input_channels).astype(np.float32)
|
|
if order == "NCHW":
|
|
X = X.transpose((0, 4, 1, 2, 3))
|
|
|
|
self.assertDeviceChecks(dc, op, [X], [0], threshold=0.001)
|
|
if 'MaxPool' not in op_type:
|
|
self.assertDeviceChecks(dc, op, [X], [0], threshold=0.001)
|
|
|
|
@given(stride=st.integers(1, 3),
|
|
pad=st.integers(0, 2),
|
|
kernel=st.integers(1, 6),
|
|
size=st.integers(3, 5),
|
|
input_channels=st.integers(1, 3),
|
|
batch_size=st.integers(1, 3),
|
|
order=st.sampled_from(["NCHW", "NHWC"]),
|
|
op_type=st.sampled_from(["MaxPool", "AveragePool",
|
|
"MaxPool3D", "AveragePool3D"]),
|
|
engine=st.sampled_from(["", "CUDNN"]),
|
|
**hu.gcs)
|
|
def test_global_pooling_3d(self, stride, pad, kernel, size, input_channels,
|
|
batch_size, order, op_type, engine, gc, dc):
|
|
assume(pad < kernel)
|
|
assume(size + pad + pad >= kernel)
|
|
# Used to determine if we can use global pooling for average or max pooling
|
|
# the assumptions here are:
|
|
# 1. kernel can be greater than input dim, but always smaller than dim + pads
|
|
# on both sides, ie.
|
|
# dim.H + pad_t + pad_b >= kernel.H
|
|
# dim.W + pad_l + pad_r >= kernel.W
|
|
# dim.D + pad_f + pad_e >= kernel.D (f = front e = end)
|
|
# 2. padding applied to both sides of the input dim
|
|
# 3. pooling are applied by first align kernel with one side of padding, then
|
|
# shifting kernel for a stride distance towards the other side of padding
|
|
# 4. kernel continue shifts by stride distance until when one more stride is
|
|
# applied, kernel will go beyond input dim plus padding.
|
|
# So it is possible if stride value is large, some input dim elements will
|
|
# not be covered. consider these cases:
|
|
#
|
|
# case 1:
|
|
# kernel = 4, dim = 3, pad_l = 2, pad_r = 2, stride = 4
|
|
# when kernel is applied for the first time, pad_l and dim upto 2
|
|
# is covered then we have 1 unit left of dim and pad_r not covered, but
|
|
# because stride is 4, shift kernel by 4 will go beyond pad_r, we should not
|
|
# apply another kernel, the out_size will be 1, and some element (last of
|
|
# dim) is ignored, therefore we can not use global pooling
|
|
#
|
|
# case 2:
|
|
# k = 4, dim = 3, pad_l = 1, pad_r = 2, stride = 1
|
|
# after kernel applied first time, pad_l and dim and 1st pad_r element all
|
|
# covered, shift kernel by stride move it to the end of pad_r, covering dim +
|
|
# pad_r, not beyond pad_r, so we should apply the kernel for a second time.
|
|
# out_size = 2 and we should not use global pooling either because dim is
|
|
# covered twice.
|
|
#
|
|
# case 3:
|
|
# k = 4, dim = 3, pad_l = 1, pad_r = 1, stride = 2
|
|
# first kernel apply cover all dim, but can not shift by stride because
|
|
# kernel go beyond pad_r so kernel is only applied once and cover entire dim
|
|
# this is the only case we can use global pooling.
|
|
#
|
|
# Summary: use global pooling when all dim is covered and only covered once
|
|
assume(kernel >= size)
|
|
assume(kernel + stride > size + pad + pad)
|
|
op = core.CreateOperator(
|
|
op_type,
|
|
["X"],
|
|
["Y"],
|
|
kernels=[kernel] * 3,
|
|
order=order,
|
|
global_pooling=True,
|
|
engine=engine,
|
|
)
|
|
X = np.random.rand(
|
|
batch_size, size, size, size, input_channels).astype(np.float32)
|
|
if order == "NCHW":
|
|
X = X.transpose((0, 4, 1, 2, 3))
|
|
|
|
self.assertDeviceChecks(dc, op, [X], [0], threshold=0.001)
|
|
if 'MaxPool' not in op_type:
|
|
self.assertDeviceChecks(dc, op, [X], [0], threshold=0.001)
|
|
|
|
@unittest.skipIf(not workspace.has_gpu_support, "No GPU support")
|
|
@given(stride=st.integers(1, 3),
|
|
pad=st.integers(0, 3),
|
|
kernel=st.integers(1, 5),
|
|
size=st.integers(7, 9),
|
|
input_channels=st.integers(1, 3),
|
|
batch_size=st.integers(1, 3),
|
|
**hu.gcs_gpu_only)
|
|
def test_pooling_with_index(self, stride, pad, kernel, size,
|
|
input_channels, batch_size, gc, dc):
|
|
assume(pad < kernel)
|
|
op = core.CreateOperator(
|
|
"MaxPoolWithIndex",
|
|
["X"],
|
|
["Y", "Y_index"],
|
|
stride=stride,
|
|
kernel=kernel,
|
|
pad=pad,
|
|
order="NCHW",
|
|
deterministic=1,
|
|
)
|
|
X = np.random.rand(
|
|
batch_size, size, size, input_channels).astype(np.float32)
|
|
|
|
# transpose due to order = NCHW
|
|
X = X.transpose((0, 3, 1, 2))
|
|
|
|
self.assertDeviceChecks(dc, op, [X], [0])
|
|
|
|
@given(sz=st.integers(1, 20),
|
|
batch_size=st.integers(1, 4),
|
|
engine=st.sampled_from(["", "CUDNN"]),
|
|
op_type=st.sampled_from(["AveragePool", "AveragePool2D"]),
|
|
**hu.gcs)
|
|
@settings(max_examples=3, timeout=10)
|
|
def test_global_avg_pool_nchw(self, op_type, sz, batch_size, engine, gc, dc):
|
|
''' Special test to stress the fast path of NCHW average pool '''
|
|
op = core.CreateOperator(
|
|
op_type,
|
|
["X"],
|
|
["Y"],
|
|
stride=1,
|
|
kernel=sz,
|
|
pad=0,
|
|
order="NCHW",
|
|
engine=engine,
|
|
)
|
|
X = np.random.rand(
|
|
batch_size, 3, sz, sz).astype(np.float32)
|
|
|
|
self.assertDeviceChecks(dc, op, [X], [0])
|
|
self.assertGradientChecks(gc, op, [X], 0, [0])
|
|
|
|
@given(sz=st.integers(1, 20),
|
|
batch_size=st.integers(1, 4),
|
|
engine=st.sampled_from(["", "CUDNN"]),
|
|
op_type=st.sampled_from(["MaxPool", "MaxPool2D"]),
|
|
**hu.gcs)
|
|
@settings(max_examples=3, timeout=10)
|
|
def test_global_max_pool_nchw(self, op_type, sz,
|
|
batch_size, engine, gc, dc):
|
|
''' Special test to stress the fast path of NCHW max pool '''
|
|
# CuDNN 5 does not support deterministic max pooling.
|
|
assume(workspace.GetCuDNNVersion() >= 6000 or engine != "CUDNN")
|
|
op = core.CreateOperator(
|
|
op_type,
|
|
["X"],
|
|
["Y"],
|
|
stride=1,
|
|
kernel=sz,
|
|
pad=0,
|
|
order="NCHW",
|
|
engine=engine,
|
|
deterministic=1,
|
|
)
|
|
|
|
np.random.seed(1234)
|
|
X = np.random.rand(
|
|
batch_size, 3, sz, sz).astype(np.float32)
|
|
|
|
self.assertDeviceChecks(dc, op, [X], [0])
|
|
self.assertGradientChecks(gc, op, [X], 0, [0], stepsize=1e-4)
|
|
|
|
@given(stride=st.integers(1, 3),
|
|
pad=st.integers(0, 3),
|
|
kernel=st.integers(1, 5),
|
|
size=st.integers(7, 9),
|
|
input_channels=st.integers(1, 3),
|
|
batch_size=st.integers(1, 3),
|
|
order=st.sampled_from(["NCHW", "NHWC"]),
|
|
op_type=st.sampled_from(["MaxPool", "AveragePool", "LpPool",
|
|
"MaxPool2D", "AveragePool2D"]),
|
|
engine=st.sampled_from(["", "CUDNN"]),
|
|
**hu.gcs)
|
|
def test_pooling(self, stride, pad, kernel, size,
|
|
input_channels, batch_size,
|
|
order, op_type, engine, gc, dc):
|
|
assume(pad < kernel)
|
|
op = core.CreateOperator(
|
|
op_type,
|
|
["X"],
|
|
["Y"],
|
|
stride=stride,
|
|
kernel=kernel,
|
|
pad=pad,
|
|
order=order,
|
|
engine=engine,
|
|
)
|
|
X = np.random.rand(
|
|
batch_size, size, size, input_channels).astype(np.float32)
|
|
if order == "NCHW":
|
|
X = X.transpose((0, 3, 1, 2))
|
|
|
|
self.assertDeviceChecks(dc, op, [X], [0])
|
|
if 'MaxPool' not in op_type:
|
|
self.assertGradientChecks(gc, op, [X], 0, [0])
|
|
|
|
@given(size=st.integers(7, 9),
|
|
input_channels=st.integers(1, 3),
|
|
batch_size=st.integers(1, 3),
|
|
order=st.sampled_from(["NCHW", "NHWC"]),
|
|
op_type=st.sampled_from(["MaxPool", "AveragePool", "LpPool"]),
|
|
engine=st.sampled_from(["", "CUDNN"]),
|
|
**hu.gcs)
|
|
def test_global_pooling(self, size, input_channels, batch_size,
|
|
order, op_type, engine, gc, dc):
|
|
# CuDNN 5 does not support deterministic max pooling.
|
|
assume(workspace.GetCuDNNVersion() >= 6000 or op_type != "MaxPool")
|
|
op = core.CreateOperator(
|
|
op_type,
|
|
["X"],
|
|
["Y"],
|
|
order=order,
|
|
engine=engine,
|
|
global_pooling=True,
|
|
)
|
|
X = np.random.rand(
|
|
batch_size, size, size, input_channels).astype(np.float32)
|
|
if order == "NCHW":
|
|
X = X.transpose((0, 3, 1, 2))
|
|
|
|
self.assertDeviceChecks(dc, op, [X], [0])
|
|
if 'MaxPool' not in op_type:
|
|
self.assertGradientChecks(gc, op, [X], 0, [0])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import unittest
|
|
unittest.main()
|