pytorch/torch/_inductor/kernel/mm.py

795 lines
26 KiB
Python

# mypy: allow-untyped-defs
import functools
import logging
from typing import Any, Dict, List, Optional
import torch
from torch._inductor.autoheuristic.autoheuristic import AutoHeuristicSelectAlgorithm
from torch._inductor.autoheuristic.autoheuristic_utils import (
AHContext,
context_add_strides,
context_add_using_tf32,
get_mixedmm_precondition,
mixed_mm_operations,
mm_operations,
)
from torch._inductor.codegen.cpp_gemm_template import CppPackedGemmTemplate
from torch._inductor.virtualized import V
from .. import config as inductor_config, ir
from ..codegen.common import BackendFeature
from ..codegen.cuda.gemm_template import CUTLASS2xGemmTemplate, CUTLASS3xGemmTemplate
from ..codegen.rocm.ck_universal_gemm_template import CKGemmTemplate
from ..codegen.wrapper import PythonWrapperCodegen
from ..ir import FlexibleLayout, is_triton
from ..lowering import register_lowering
from ..select_algorithm import (
autotune_select_algorithm,
ExternKernelChoice,
NoValidChoicesError,
TritonTemplate,
)
from ..utils import (
get_gpu_shared_memory,
use_aten_gemm_kernels,
use_ck_gemm_template,
use_cpp_packed_gemm_template,
use_cutlass_template,
use_max_autotune,
use_triton_template,
)
from .mm_common import (
_is_static_problem,
addmm_epilogue,
extra_mm_configs,
int8_mm_configs,
mixed_mm_configs,
mm_args,
mm_configs,
mm_grid,
mm_options,
triton_config,
)
log = logging.getLogger(__name__)
aten = torch.ops.aten
mm_template = TritonTemplate(
name="mm",
grid=mm_grid,
source=r"""
{{def_kernel("A", "B")}}
M = {{size("A", 0)}}
N = {{size("B", 1)}}
K = {{size("A", 1)}}
if M * N == 0:
# early exit due to zero-size input(s)
return
stride_am = {{stride("A", 0)}}
stride_ak = {{stride("A", 1)}}
stride_bk = {{stride("B", 0)}}
stride_bn = {{stride("B", 1)}}
# based on triton.ops.matmul
pid = tl.program_id(0)
grid_m = (M + BLOCK_M - 1) // BLOCK_M
grid_n = (N + BLOCK_N - 1) // BLOCK_N
# re-order program ID for better L2 performance
width = GROUP_M * grid_n
group_id = pid // width
group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
pid_m = group_id * GROUP_M + (pid % group_size)
pid_n = (pid % width) // (group_size)
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
if (stride_am == 1 and stride_ak == M) or (stride_am == K and stride_ak == 1):
ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
else:
ram = rm % M
if (stride_bk == 1 and stride_bn == K) or (stride_bk == N and stride_bn == 1):
rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
else:
rbn = rn % N
rk = tl.arange(0, BLOCK_K)
A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak)
B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn)
acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE)
for k in range(K, 0, -BLOCK_K):
if EVEN_K:
a = tl.load(A)
b = tl.load(B)
else:
a = tl.load(A, mask=rk[None, :] < k, other=0.)
b = tl.load(B, mask=rk[:, None] < k, other=0.)
if B_PROLOGUE_CAST_TYPE is not None:
b = b.to(B_PROLOGUE_CAST_TYPE)
acc += tl.dot(a, b, allow_tf32=ALLOW_TF32)
A += BLOCK_K * stride_ak
B += BLOCK_K * stride_bk
# rematerialize rm and rn to save registers
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
idx_m = rm[:, None]
idx_n = rn[None, :]
mask = (idx_m < M) & (idx_n < N)
# inductor generates a suffix
{{store_output(("idx_m", "idx_n"), "acc", "mask")}}
""",
)
# prevent duplication registration of extern functions
@functools.lru_cache(None)
def lazy_register_extern_choice(fn):
return ExternKernelChoice(fn)
aten_mm = ExternKernelChoice(torch.mm, "at::mm_out")
aten_addmm = ExternKernelChoice(
torch.addmm, "at::addmm_out", op_overload=aten.addmm.default
)
aten__int_mm = ExternKernelChoice(torch._int_mm, "at::_int_mm")
aten__sparse_semi_structured_mm = ExternKernelChoice(
torch._sparse_semi_structured_mm,
"at::_sparse_semi_structured_mm",
has_out_variant=False,
)
def _is_int8_mat(mat):
return mat.get_dtype() in (torch.int8, torch.uint8)
def _is_large_block_for_cpu(m, n, k):
# Thresholds are experimentally determined to reduce Triton CPU compile times
return m * n > 2**13
def mm_config_kwargs(device):
if device == "cpu":
return {
"scale": 0.5,
"exclude": _is_large_block_for_cpu,
}
return {}
def bias_addmm(inp, mat1, mat2, *, out=None, alpha=1, beta=1):
"""
Giving torch.addmm a 1D tensor calls a different (faster) cublasLt
kernel under the hood. There are a few shapes where this is slower,
but they are rare.
"""
if inp.stride(0) == 0 or inp.size(0) == 1:
return torch.addmm(inp[0], mat1, mat2, out=out, alpha=alpha, beta=beta)
return torch.addmm(inp, mat1, mat2, out=out, alpha=alpha, beta=beta)
aten_bias_addmm = ExternKernelChoice(bias_addmm, None)
@register_lowering(aten.mm, type_promotion_kind=None)
def tuned_mm(mat1, mat2, *, layout=None):
m, n, k, layout, mat1, mat2 = mm_args(mat1, mat2, layout=layout)
name = "mm"
aten_layout = layout
if not use_max_autotune():
aten_layout = FlexibleLayout(
device=layout.device, dtype=layout.dtype, size=layout.size
)
# options to tune from
choices = (
[aten_mm.bind((mat1, mat2), aten_layout)] if use_aten_gemm_kernels() else []
)
static_shape, is_nonzero = _is_static_problem(layout)
if is_nonzero and use_triton_template(layout):
for config in mm_configs(m, n, k, **mm_config_kwargs(ir.get_device_type(mat1))):
mm_template.maybe_append_choice(
choices,
input_nodes=(mat1, mat2),
layout=layout,
**mm_options(config, m, n, k, layout),
)
if static_shape and is_nonzero and use_cutlass_template(layout, m, n, k):
CUTLASS3xGemmTemplate.add_cutlass_gemm_choices(choices, layout, [mat1, mat2])
if is_nonzero and use_ck_gemm_template(layout, m, n, k):
CKGemmTemplate.add_ck_gemm_choices(choices, layout, [mat1, mat2])
if use_cpp_packed_gemm_template(layout, mat1, mat2):
CppPackedGemmTemplate.add_choices(
choices,
layout,
[mat1, mat2],
)
input_nodes = [mat1, mat2]
if (
is_nonzero
and use_triton_template(layout)
and torch._inductor.config.run_autoheuristic(name)
and is_triton(mat1)
):
always_included = []
if use_aten_gemm_kernels():
always_included.append("extern_mm")
num_choices_before_extra_configs = len(choices)
for config in extra_mm_configs(
m, n, k, **mm_config_kwargs(ir.get_device_type(mat1))
):
mm_template.maybe_append_choice(
choices,
input_nodes=(mat1, mat2),
layout=layout,
**mm_options(config, m, n, k, layout),
)
# using AutoHeuristic for ranking
ah_choices = mm_autoheuristic(
mat1,
mat2,
m,
n,
k,
choices,
name,
input_nodes,
mm_operations(),
None,
top_k=10,
always_included=always_included,
)
if not torch._inductor.config.collect_autoheuristic(name):
# if we are collecting data, we do not want to modify choices
if ah_choices is not None and len(ah_choices) > 0:
# the order in which autoheuristic returns choices is not the same as
# as the order of choices, which affects things like epilogue fusion.
# once epilogue fusion benchmarks choices in sorted order, I think we can
# just use the order returned by autoheuristic
choices = [choice for choice in choices if choice in ah_choices]
else:
choices = choices[:num_choices_before_extra_configs]
if (
len(choices) == 0
and not use_aten_gemm_kernels()
and inductor_config.autotune_fallback_to_aten
):
log.warning("No choices for GEMM, using ATen backend as fallback")
return aten_mm.bind((mat1, mat2), aten_layout).output_node()
for k in inductor_config.external_matmul:
choices.append(lazy_register_extern_choice(k).bind((mat1, mat2), layout))
try:
return autotune_select_algorithm(name, choices, [mat1, mat2], layout)
except NoValidChoicesError:
if not inductor_config.autotune_fallback_to_aten:
raise
log.warning("All choices for GEMM were invalid, using ATen backend as fallback")
return aten_mm.bind((mat1, mat2), aten_layout).output_node()
@register_lowering(aten._int_mm, type_promotion_kind=None)
def tuned_int_mm(mat1, mat2, *, layout=None):
m, n, k, layout, mat1, mat2 = mm_args(
mat1, mat2, layout=layout, out_dtype=torch.int32
)
static_shape, is_nonzero = _is_static_problem(layout)
use_cutlass = static_shape and is_nonzero and use_cutlass_template(layout, m, n, k)
choices = (
[aten__int_mm.bind((mat1, mat2), layout)] if use_aten_gemm_kernels() else []
)
# TODO: Re-enable eager mode implementation once cuBLAS is fixed
if use_cutlass or use_triton_template(layout, enable_int32=True):
choices = []
if use_cutlass:
CUTLASS3xGemmTemplate.add_cutlass_gemm_choices(
choices, layout, [mat1, mat2], fuseable=True, non_fuseable=True
)
if is_nonzero and use_triton_template(layout, enable_int32=True):
for config in int8_mm_configs(
m, n, k, **mm_config_kwargs(ir.get_device_type(mat1))
):
mm_template.maybe_append_choice(
choices,
input_nodes=(mat1, mat2),
layout=layout,
**mm_options(config, m, n, k, layout),
)
if len(choices) == 0:
log.warning(
"No choices for integer GEMM avaialbe using configured backends, using ATen backend as fallback"
)
choices = [aten__int_mm.bind((mat1, mat2), layout)]
try:
return autotune_select_algorithm("int_mm", choices, [mat1, mat2], layout)
except NoValidChoicesError:
if not inductor_config.autotune_fallback_to_aten:
raise
log.warning("All choices for GEMM were invalid, using ATen backend as fallback")
choices = [aten__int_mm.bind((mat1, mat2), layout)]
return autotune_select_algorithm("int_mm", choices, [mat1, mat2], layout)
@register_lowering(aten.addmm, type_promotion_kind=None)
def tuned_addmm(inp, mat1, mat2, *, alpha=1, beta=1, layout=None):
ordered_kwargs_for_cpp_kernel = ("beta", "alpha")
m, n, k, layout, mat1, mat2, inp_expanded = mm_args(mat1, mat2, inp, layout=layout)
static_shape, is_nonzero = _is_static_problem(layout)
if (not is_nonzero) or (not use_max_autotune()):
# Use a FlexibleLayout if we are not autotuning.
# This allows padding strides for the output.
from torch._inductor.ir import FixedLayout, FlexibleLayout
if isinstance(layout, FixedLayout):
layout = FlexibleLayout(
device=layout.device, dtype=layout.dtype, size=layout.size
)
choices = (
[
aten_addmm.bind(
(inp, mat1, mat2),
layout,
alpha=alpha,
beta=beta,
)
]
if use_aten_gemm_kernels()
else []
)
return autotune_select_algorithm("addmm", choices, [inp, mat1, mat2], layout)
choices = (
[
aten_addmm.bind(
(inp_expanded, mat1, mat2),
layout,
alpha=alpha,
beta=beta,
)
]
if use_aten_gemm_kernels()
else []
)
if (
use_aten_gemm_kernels()
and inp_expanded.get_stride()[0] == 0
and inp_expanded.get_device().type == "cuda"
and inductor_config.triton.autotune_cublasLt
):
# unexpand inp to make sure fused addmm from cublasLt is used
choices.insert(
0,
aten_bias_addmm.bind(
(inp_expanded, mat1, mat2), layout, alpha=alpha, beta=beta
),
)
if is_nonzero and use_triton_template(layout):
for config in mm_configs(m, n, k, **mm_config_kwargs(ir.get_device_type(mat1))):
mm_template.maybe_append_choice(
choices,
input_nodes=(inp_expanded, mat1, mat2),
layout=layout,
**mm_options(config, m, n, k, layout),
prefix_args=1,
epilogue_fn=addmm_epilogue(layout.dtype, alpha, beta),
)
if static_shape and is_nonzero and use_cutlass_template(layout, m, n, k):
# Filter out a known cause of CUDA illegal memory access errors
# broadcasting on the last dim of the bias term seems not to be working
# in the linear GEMM epilogue used by addmm.
if (
PythonWrapperCodegen.statically_known_int_or_none(
inp_expanded.layout.stride[-1]
)
!= 0
):
CUTLASS3xGemmTemplate.add_cutlass_gemm_choices(
choices,
layout,
[mat1, mat2, inp_expanded],
alpha=alpha,
beta=beta,
)
if is_nonzero and use_ck_gemm_template(layout, m, n, k):
CKGemmTemplate.add_ck_gemm_choices(
choices,
layout,
[mat1, mat2, inp_expanded],
alpha=alpha,
beta=beta,
)
if use_cpp_packed_gemm_template(layout, mat1, mat2):
CppPackedGemmTemplate.add_choices(
choices,
layout,
[inp_expanded, mat1, mat2],
alpha=alpha,
beta=beta,
has_bias=True,
)
add_aten_fallback = False
if len(choices) == 0:
log.warning("No choices for GEMM, using ATen backend as fallback")
add_aten_fallback = True
if add_aten_fallback:
choices.append(
aten_addmm.bind(
(inp_expanded, mat1, mat2),
layout,
ordered_kwargs_for_cpp_kernel,
alpha=alpha,
beta=beta,
)
)
if (
inp_expanded.get_stride()[0] == 0
and inp_expanded.get_device().type == "cuda"
and inductor_config.triton.autotune_cublasLt
):
# unexpand inp to make sure fused addmm from cublasLt is used
choices.insert(
0,
aten_bias_addmm.bind(
(inp_expanded, mat1, mat2), layout, alpha=alpha, beta=beta
),
)
try:
return autotune_select_algorithm(
"addmm", choices, [inp_expanded, mat1, mat2], layout
)
except NoValidChoicesError:
if not inductor_config.autotune_fallback_to_aten:
raise
log.warning("All choices for GEMM were invalid, using ATen backend as fallback")
fallback_choice = aten_addmm.bind(
(inp, mat1, mat2),
layout,
ordered_kwargs_for_cpp_kernel,
alpha=alpha,
beta=beta,
)
return fallback_choice.output_node()
@register_lowering(aten._sparse_semi_structured_mm, type_promotion_kind=None)
def tuned_sparse_semi_structured_mm(
mat1, mat1_meta, mat2, *, out_dtype=None, layout=None
):
from torch._inductor.select_algorithm import realize_inputs
mat1, mat1_meta, mat2 = realize_inputs(mat1, mat1_meta, mat2)
m1, k1 = mat1.get_size()
m2, _ = mat1_meta.get_size()
k2, n = mat2.get_size()
m = V.graph.sizevars.guard_equals(m1, m2)
k = V.graph.sizevars.guard_equals(2 * k1, k2)
if layout is None:
from torch._inductor.ir import FixedLayout
layout = FixedLayout(
mat2.get_device(),
out_dtype if out_dtype else mat2.get_dtype(),
[m, n],
[n, 1],
)
else:
assert out_dtype is None, "out_dtype is ignored if layout is specified."
choices = (
[
aten__sparse_semi_structured_mm.bind(
(mat1, mat1_meta, mat2), layout, out_dtype=out_dtype
)
]
if use_aten_gemm_kernels()
else []
)
if m * n != 0 and use_cutlass_template(layout, m, n, k):
CUTLASS2xGemmTemplate.add_cutlass_gemm_choices(
choices, layout, [mat1, mat2, mat1_meta], fuseable=True, non_fuseable=True
)
return autotune_select_algorithm(
"sparse_semi_structured_mm", choices, [mat1, mat1_meta, mat2], layout
)
def fallback_mixed_mm(mat1, mat2, *, out):
return torch.mm(mat1, mat2.to(mat1.dtype), out=out)
aten_fallback_mixed_mm = ExternKernelChoice(fallback_mixed_mm, None)
@functools.lru_cache(None)
def _is_sm7x_or_older_gpu(index: Optional[int]) -> bool:
props = torch.cuda.get_device_properties(index or 0)
return props.major <= 7
def dims_are_int(dims):
return all(isinstance(dim, int) for dim in dims)
def try_heuristic(m, n, k, choices, mat1, mat2, mat2_dtype, layout):
m, n, k = get_size_hints(mat1, mat2, m, n, k)
if not dims_are_int([m, n, k]):
return None
if mat1.dtype != torch.float16:
return None
# only use heuristic if we are running on an A100
# torch.cuda.get_device_capability() >= (8, 0) returns true for A10G
# which does not have enough shared memory for one of the configs
if (
not torch.cuda.get_device_capability() >= (8, 0)
) or get_gpu_shared_memory() != 166912:
return None
if m == 1 and (n % 16 != 0 or k % 16 != 0):
return None
if m <= 16 and n >= 4096 and k >= 4096:
return triton_config(
BLOCK_M=16,
BLOCK_N=64,
BLOCK_K=128,
num_stages=5,
num_warps=4,
)
elif m > 16 and m <= 32 and n >= 4096 and k >= 4096:
return triton_config(
BLOCK_M=32,
BLOCK_N=32,
BLOCK_K=128,
num_stages=5,
num_warps=4,
)
elif m > 32 and m <= 64 and n >= 4096 and k >= 4096:
return triton_config(
BLOCK_M=64,
BLOCK_N=32,
BLOCK_K=128,
num_stages=5,
num_warps=4,
)
return None
def mm_autoheuristic(
mat1,
mat2,
m,
n,
k,
choices,
name,
input_nodes,
ops,
precondition,
top_k: Optional[int] = None,
always_included=None,
):
m, n, k = get_size_hints(mat1, mat2, m, n, k)
if not dims_are_int([m, n, k]):
return None
mat1_stride, mat2_stride = get_size_hints_strides(mat1, mat2)
def get_context(m, k, n, mat1, mat2, mat1_stride, mat2_stride):
context = AHContext()
context.add_feature("m", m)
context.add_feature("k", k)
context.add_feature("n", n)
context.add_feature("mat1_dtype", mat1.layout.dtype, is_categorical=True)
context.add_feature("mat2_dtype", mat2.layout.dtype, is_categorical=True)
context_add_strides(context, "mat1", mat1_stride)
context_add_strides(context, "mat2", mat2_stride)
context.add_feature(
"mat1_iscontig", mat1.layout.is_contiguous(), is_categorical=True
)
context.add_feature(
"mat2_iscontig", mat2.layout.is_contiguous(), is_categorical=True
)
if name == "mm":
# for mixed_mm, we only consider fp16
context_add_using_tf32(context, mat1.layout.dtype)
return context
def fallback():
return None
context = get_context(m, k, n, mat1, mat2, mat1_stride, mat2_stride)
autoheuristic = AutoHeuristicSelectAlgorithm(
fallback=fallback,
choices=choices,
input_nodes=input_nodes,
context=context,
name=name,
augment_context=ops,
precondition=precondition,
)
if top_k is not None:
# TODO: is there a cleaner way to ensure aten.mm is always included?
return autoheuristic.get_top_k_choices_caller(
top_k, always_included=always_included
)
return autoheuristic.get_choice_caller()
def get_size_hints(mat1, mat2, m, n, k):
if not isinstance(m, int) or not isinstance(k, int):
(m, k) = V.graph.sizevars.size_hints(
mat1.get_size(),
fallback=torch._inductor.config.unbacked_symint_fallback,
)
if not isinstance(n, int) or not isinstance(k, int):
(k, n) = V.graph.sizevars.size_hints(
mat2.get_size(),
fallback=torch._inductor.config.unbacked_symint_fallback,
)
return m, n, k
def get_size_hints_strides(mat1, mat2):
mat1_stride = mat1.layout.stride
mat2_stride = mat2.layout.stride
strides = [mat1_stride, mat2_stride]
strides_hints = []
for stride in strides:
if not isinstance(stride, int):
stride = V.graph.sizevars.size_hints(
stride,
fallback=torch._inductor.config.unbacked_symint_fallback,
)
strides_hints.append(stride)
return strides_hints[0], strides_hints[1]
def tuned_mixed_mm(mat1, mat2, mat2_dtype):
m, n, k, layout, mat1, mat2 = mm_args(mat1, mat2, layout=None)
static_shape, is_nonzero = _is_static_problem(layout)
fallback = aten_fallback_mixed_mm.bind((mat1, mat2), layout)
choices = [fallback]
# can't use triton kernel unless one of these is true or if running on v100 (numerical issues)
skip_triton = (
(
mat1.layout.dtype != torch.float32
and not (mat2.layout.is_contiguous() or mat2.layout.is_transposed())
)
or _is_sm7x_or_older_gpu(layout.device.index)
or inductor_config.mixed_mm_choice == "aten"
or not V.graph.has_feature(layout.device, BackendFeature.TRITON_TEMPLATES)
or (
mat1.layout.dtype == torch.float32 and torch.backends.cuda.matmul.allow_tf32
)
or (mat1.layout.dtype == torch.bfloat16 and mat2.layout.dtype == torch.uint8)
)
if inductor_config.mixed_mm_choice == "triton":
choices = []
if not skip_triton:
b_prologue_cast_type = f"tl.{mat2_dtype}".replace("torch.", "")
if static_shape and inductor_config.mixed_mm_choice == "heuristic":
choices = []
config = try_heuristic(m, n, k, choices, mat1, mat2, mat2_dtype, layout)
if config is not None:
mm_template.maybe_append_choice(
choices,
input_nodes=(mat1, mat2),
layout=layout,
**mm_options(config, m, n, k, layout, b_prologue_cast_type),
)
choices.append(fallback)
has_int8_tensor = _is_int8_mat(mat1) or _is_int8_mat(mat2)
for config in mixed_mm_configs(
m,
n,
k,
has_int8_tensor=has_int8_tensor,
**mm_config_kwargs(ir.get_device_type(mat1)),
):
mm_template.maybe_append_choice(
choices,
input_nodes=(mat1, mat2),
layout=layout,
**mm_options(config, m, n, k, layout, b_prologue_cast_type),
)
if static_shape and is_nonzero and use_cutlass_template(layout, m, n, k):
CUTLASS3xGemmTemplate.add_cutlass_gemm_choices(
choices, layout, [mat1, mat2], fuseable=True, non_fuseable=True
)
CUTLASS2xGemmTemplate.add_cutlass_gemm_choices(
choices, layout, [mat1, mat2], fuseable=True, non_fuseable=True
)
if skip_triton and not choices:
choices = [fallback]
name = "mixed_mm"
input_nodes = [mat1, mat2]
if torch._inductor.config.run_autoheuristic(name):
choice = mm_autoheuristic(
mat1,
mat2,
m,
n,
k,
choices,
name,
input_nodes,
mixed_mm_operations(),
get_mixedmm_precondition,
)
if (
not skip_triton
and inductor_config.mixed_mm_choice == "heuristic"
and choice is not None
):
choices.insert(0, choice)
return autotune_select_algorithm(name, choices, input_nodes, layout)
# This op is a special case of the int_mm op which we use based on the pattern
# _int_mm -> mul (defined in ../fx_passes/post_grad.py) in order to prevent
# realization of the int32 _int_mm output by forcing fusion with the mul op.
# This is only used when config.force_fuse_int_mm_with_mul = True
def tuned_fused_int_mm_mul(mat1, mat2, mat3, out_dtype, *, layout=None):
out_dtype = (
torch.promote_types(mat3.get_dtype(), torch.int32)
if out_dtype is None
else out_dtype
)
m, n, k, layout, mat1, mat2, mat3 = mm_args(
mat1, mat2, mat3, layout=layout, out_dtype=out_dtype
)
choices: List[Dict[Any, Any]] = []
for config in int8_mm_configs(
m, n, k, **mm_config_kwargs(ir.get_device_type(mat1))
):
mm_template.maybe_append_choice(
choices,
input_nodes=(mat1, mat2, mat3),
layout=layout,
**dict(mm_options(config, m, n, k, layout), ACC_TYPE="tl.int32"),
suffix_args=1,
epilogue_fn=V.ops.mul,
)
return autotune_select_algorithm("int_mm", choices, [mat1, mat2, mat3], layout)