mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
96 lines
3.4 KiB
Python
96 lines
3.4 KiB
Python
# Copyright (c) 2016-present, Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
##############################################################################
|
|
|
|
# @package label_smooth
|
|
# Module caffe2.python.layers.label_smooth
|
|
|
|
|
|
|
|
|
|
|
|
from caffe2.python import core, schema
|
|
from caffe2.python.layers.layers import ModelLayer
|
|
import numpy as np
|
|
|
|
|
|
class LabelSmooth(ModelLayer):
|
|
def __init__(
|
|
self, model, label, smooth_matrix, name='label_smooth', **kwargs
|
|
):
|
|
super(LabelSmooth, self).__init__(model, name, label, **kwargs)
|
|
self.label = label
|
|
# shape as a list
|
|
smooth_matrix = np.array(smooth_matrix).astype(np.float32).flatten()
|
|
self.set_dim(smooth_matrix)
|
|
self.set_smooth_matrix(smooth_matrix)
|
|
self.output_schema = schema.Scalar(
|
|
(np.float32, (self.dim, )),
|
|
self.get_next_blob_reference('smoothed_label')
|
|
)
|
|
|
|
def set_dim(self, smooth_matrix):
|
|
num_elements = smooth_matrix.size
|
|
self.binary_prob_label = (num_elements == 2)
|
|
if self.binary_prob_label:
|
|
self.dim = 1
|
|
else:
|
|
assert np.sqrt(num_elements)**2 == num_elements
|
|
self.dim = int(np.sqrt(num_elements))
|
|
|
|
def set_smooth_matrix(self, smooth_matrix):
|
|
if not self.binary_prob_label:
|
|
self.smooth_matrix = self.model.add_global_constant(
|
|
'%s_label_smooth_matrix' % self.name,
|
|
array=smooth_matrix.reshape((self.dim, self.dim)),
|
|
dtype=np.dtype(np.float32),
|
|
)
|
|
self.len = self.model.add_global_constant(
|
|
'%s_label_dim' % self.name,
|
|
array=self.dim,
|
|
dtype=np.dtype(np.int64),
|
|
)
|
|
else:
|
|
self.smooth_matrix = smooth_matrix
|
|
|
|
def add_ops_for_binary_prob_label(self, net):
|
|
if self.label.field_type().base != np.float32:
|
|
float32_label = net.NextScopedBlob('float32_label')
|
|
net.Cast([self.label()], [float32_label], to=core.DataType.FLOAT)
|
|
else:
|
|
float32_label = self.label()
|
|
net.StumpFunc(
|
|
float32_label,
|
|
self.output_schema(),
|
|
threshold=0.5,
|
|
low_value=self.smooth_matrix[0],
|
|
high_value=self.smooth_matrix[1],
|
|
)
|
|
|
|
def add_ops_for_categorical_label(self, net):
|
|
if self.label.field_type().base != np.int64:
|
|
int64_label = net.NextScopedBlob('int64_label')
|
|
net.Cast([self.label()], [int64_label], to=core.DataType.INT64)
|
|
else:
|
|
int64_label = self.label()
|
|
one_hot_label = net.NextScopedBlob('one_hot_label')
|
|
net.OneHot([int64_label, self.len], [one_hot_label])
|
|
net.MatMul([one_hot_label, self.smooth_matrix], self.output_schema())
|
|
|
|
def add_ops(self, net):
|
|
if self.binary_prob_label:
|
|
self.add_ops_for_binary_prob_label(net)
|
|
else:
|
|
self.add_ops_for_categorical_label(net)
|