pytorch/torch/distributed/fsdp/_common_utils.py
Andrew Gu 800287fb56 [FSDP] Optimize away intermediate div_ for HSDP (#106034)
### Background: Gradient Pre-Divide
Consider $N$ data parallel workers. Define $g_i$ to be the $i$ th worker's local unsharded gradient. Data parallel gradient reduction computes $\overline g = \frac{1}{N} \sum_{i \in [N]} g_i$.

$\sum_{i \in [N]} g_i$ increases the magnitude by a factor of $N$, which may overflow for fp16. However, if we pre-divide and compute $\sum_{i \in [N]} \frac{g_i}{N}$, then the $\frac{g_i}{N}$ may underflow. The current solution from Myle for FSDP is to pre-divide by $\sqrt{N}$ and post-divide by $\sqrt{N}$:
$$\overline{g} = \frac{1}{\sqrt{N}} \sum_{i \in [N]} \frac{g_i}{\sqrt{N}}.$$

Now, consider HSDP with $N = S \cdot R$ data parallel workers, sharding over $S$ workers and replicating over $R$ workers. Define $g_{i,j}$ to be the $i \cdot S + j$ th worker's local unsharded gradient (so sharding indexes with $i$ and replication indexes with $j$). The existing implementation computes
$$\overline{g} = \frac{1}{\sqrt{R}} \sum_{j \in [R]} \textcolor{red}{ \frac{1}{\sqrt{R}} \frac{1}{\sqrt{S}} } \sum_{i \in [S]} \frac{g_i}{\sqrt{S}},$$
where the $\frac{1}{\sqrt{R}} \frac{1}{\sqrt{S}}$ involves two separate `aten::div_` kernels.

### Revisiting Pre-Divide for HSDP
A minor optimization that we can do is with this intermediate `div_`. There are two options:
1. Compute $\overline{g}$ in the same way as FSDP:
$$\overline{g} = \frac{1}{\sqrt{N}} \sum_{j \in [R]} \sum_{i \in [S]} \frac{g_{i,j}}{\sqrt{N}}.$$
2. Compute $\overline{g}$ still with an intermediate division for rescaling but coalescing the two `divs_` into one:
$$\overline{g} = \frac{1}{\sqrt{R}} \sum_{j \in [R]} \textcolor{red}{ \frac{1}{\sqrt{N}} } \sum_{i \in [S]} \frac{g_i}{\sqrt{S}}$$

This PR goes with the 1st approach prioritizing performance because (1) it matches the existing FSDP behavior and (2) it avoids a memor-bandwidth bound `div_` kernel that blocks all-reduce launch.

### Implementation Details
In order to accommodate this, we need to refactor the communication hook logic that baked the gradient pre/post-division into the default hook.
- We raise an error if registering a communication hook for HSDP since the current implementation would only apply the hook to the reduce-scatter, not the all-reduce, which may be unexpected.
- We change it so that `state._comm_hook is not None` iff a communication hook is registered. This makes the collectives and the pre/post-division in the default no-communication-hook path more visible in the code.

Differential Revision: [D47852459](https://our.internmc.facebook.com/intern/diff/D47852459)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106034
Approved by: https://github.com/rohan-varma
2023-07-28 18:36:26 +00:00

505 lines
20 KiB
Python

"""
This file includes private common utilities for FSDP.
"""
import traceback
import warnings
import weakref
from enum import auto, Enum
from functools import partial
from typing import (
Any,
Callable,
cast,
Dict,
Generator,
Iterable,
List,
no_type_check,
Optional,
Set,
Tuple,
Type,
)
import torch
import torch.distributed as dist
import torch.distributed.fsdp.flat_param as flat_param_file
import torch.nn as nn
from torch.distributed._composable_state import _get_module_state, _State
from torch.distributed._tensor.device_mesh import DeviceMesh
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_PREFIX,
)
from torch.distributed.utils import _apply_to_tensors
from torch.utils._mode_utils import no_dispatch
from .api import (
FullOptimStateDictConfig,
FullStateDictConfig,
OptimStateDictConfig,
ShardingStrategy,
StateDictConfig,
StateDictType,
)
FSDP_WRAPPED_MODULE = "_fsdp_wrapped_module"
FSDP_PREFIX = FSDP_WRAPPED_MODULE + "."
FSDP_FLATTENED = "_fsdp_flattened"
# Save a global mapping from module to its input tensor dtype to be populated
# during the forward pre-hook and consumed in the forward post-hook when
# overriding a module's mixed precision
# NOTE: We currently take the last input tensor's dtype in the case of multiple
# floating-point input tensors, which may be incorrect. However, since there is
# not a 1:1 correspondence between input and output tensors, we must use *some*
# heuristic like this to predict the desired output dtype.
_MODULE_TO_INP_DTYPE: weakref.WeakKeyDictionary = weakref.WeakKeyDictionary()
class _FSDPDeviceHandle:
"""
This is a simple abstraction for FSDP computing devices,
which enables custom backends that implement CUDA-like
semantics to be integrated with FSDP.
"""
def __init__(self, device: torch.device, backend: Any = None):
if backend is None:
try:
self.__backend = getattr(torch, device.type)
self.__device = device
except AttributeError:
raise AttributeError(
f"Device '{device}' does not have a corresponding backend registered as 'torch.{device.type}'."
)
else:
self.__backend = backend
@classmethod
def from_device(cls, device: torch.device) -> "_FSDPDeviceHandle":
"""
Return an device handle corresponding to the device, and through this handle,
operations with the same semantics as CUDA can be performed on the device.
Just return torch.cuda if the device is cuda to make attribute-access faster.
Custom backend must first register a module with the same name with {device.type} on torch.
"""
if device.type == "cuda":
return cast(_FSDPDeviceHandle, torch.cuda)
return cls(device)
def __getattr__(self, __name: str) -> Any:
try:
return getattr(self.__backend, __name)
except AttributeError:
raise AttributeError(
f"Custom backend '{self.__device.type}' not implement 'torch.{self.__device.type}.{__name}'"
)
class _UninitializedDeviceHandle(_FSDPDeviceHandle):
def __init__(self):
pass
def __getattribute__(self, __name: str) -> Any:
raise RuntimeError("Trying to use an uninitialized device handle.")
class _FSDPState(_State):
def __init__(self) -> None:
# TODO: Move all the attributes to this class to enable typing for
# FSDP/fully_shard.
self._ignored_modules: Set[nn.Module] = set()
self._ignored_params: Set[nn.Parameter] = set()
self.process_group: Optional[dist.ProcessGroup] = None
self.rank: int = -1
self.world_size: int = -1
self.sharding_strategy = ShardingStrategy.FULL_SHARD
self._use_orig_params: bool = False
self.training_state = TrainingState.IDLE
self._unshard_params_ctx: Dict[nn.Module, Generator] = {}
self._state_dict_type: StateDictType = StateDictType.FULL_STATE_DICT
self._state_dict_config: StateDictConfig = FullStateDictConfig()
self._optim_state_dict_config: OptimStateDictConfig = FullOptimStateDictConfig()
self._is_root: Optional[bool] = None
self._handle: Optional[flat_param_file.FlatParamHandle] = None
self._fully_sharded_module_to_handle: Dict[
nn.Module, Optional[flat_param_file.FlatParamHandle]
] = {}
self.compute_device: Optional[torch.device] = None
# Abstract device handle for fsdp compute device. For now,
# the compute device must implement cuda semantics used by fsdp
self._device_handle: _FSDPDeviceHandle = _UninitializedDeviceHandle()
# All following attributes should only be used for root states:
# Save these static lists to avoid the repeated tree traversals
self._all_fsdp_states: List[_FSDPState] = []
self._all_handles: List[flat_param_file.FlatParamHandle] = []
self._gradient_predivide_factor: int = 0
self._gradient_postdivide_factor: int = 0
self._comm_hook: Optional[Callable] = None
self._comm_hook_state: Optional[Any] = None
self._device_mesh: Optional[DeviceMesh] = None
def _get_module_fsdp_state(module: nn.Module) -> Optional[_FSDPState]:
state = _get_module_state(module)
if state is None or not isinstance(state, _FSDPState):
return None
return state
def _get_module_fsdp_state_if_fully_sharded_module(
module: nn.Module,
) -> Optional[_FSDPState]:
state = _get_module_fsdp_state(module)
if state is None:
return None
if state == module: # FullyShardedDataParallel module case.
return state
if module in state._fully_sharded_module_to_handle: # fully_shard case.
return state
return None
class TrainingState(Enum):
"""
An enum that indicates the state of a ``FullyShardedDataParallel` instance.
"""
IDLE = auto()
FORWARD_BACKWARD = auto()
SUMMON_FULL_PARAMS = auto()
class HandleTrainingState(Enum):
"""
An enum that indicates the state of a ``FlatParamHandle`.
"""
IDLE = auto()
FORWARD = auto()
BACKWARD_PRE = auto()
BACKWARD_POST = auto()
SUMMON_FULL_PARAMS = auto()
def _is_composable(state: _FSDPState):
# TODO: This is a temporary hack for differentiate between code paths.
return not isinstance(state, nn.Module)
@no_type_check
def _module_handle(state: _FSDPState, module: nn.Module) -> Optional["FlatParamHandle"]:
"""
Returns the ``FlatParamHandle`` s corresponding to ``module``. This is
the handle that contains some parameter in ``module``.
"""
if _is_composable(state):
# A valid FSDP state may have no managed parameters and hence no
# handles, meaning no entry in `_fully_sharded_module_to_handles`
if state._handle is None:
return None
assert (
module in state._fully_sharded_module_to_handle
), f"Expects a fully sharded module but got {module} on rank {state.rank}"
return state._fully_sharded_module_to_handle[module]
else:
# NOTE: This assumes `module` is a `FullyShardedDataParallel` instance.
return module._handle
@no_type_check
def _has_fsdp_params(state: _FSDPState, module: nn.Module) -> bool:
"""Returns if ``module`` has parameters managed by FSDP."""
return _module_handle(state, module) is not None
def _get_sharding_strategy(handle):
"""
Returns the sharding strategy of the handle.
"""
return handle._sharding_strategy if handle else None
def clean_tensor_name(tensor_name: str) -> str:
"""
Cleans the parameter or buffer name by removing any module wrapper
prefixes.
"""
tensor_name = tensor_name.replace(FSDP_PREFIX, "")
# TODO: Explicitly replacing the checkpoint wrapper prefix is not ideal as
# it couples `CheckpointWrapper` and FSDP and also does not scale for more
# module wrappers.
tensor_name = tensor_name.replace(_CHECKPOINT_PREFIX, "")
return tensor_name
def _set_fsdp_flattened(tensor: torch.Tensor) -> None:
"""
Sets an attribute on ``tensor`` to mark it as flattened by FSDP. This is to
avoid re-flattening it during nested construction.
"""
setattr(tensor, FSDP_FLATTENED, True)
def _is_fsdp_flattened(tensor: torch.Tensor) -> bool:
"""Returns if ``tensor`` has been marked as flattened by FSDP."""
return getattr(tensor, FSDP_FLATTENED, False)
def _named_parameters_with_duplicates(
module: nn.Module, **kwargs: Any
) -> List[Tuple[str, nn.Parameter]]:
"""
This API is required as some modules overwrite `named_parameters()` but do not support
`remove_duplicate`.
"""
assert (
"remove_duplicate" not in kwargs
), "_named_parameters_with_duplicates cannot be used with `remove_duplicate` argument."
kwargs["remove_duplicate"] = False
try:
ret = list(module.named_parameters(**kwargs))
except AssertionError as e:
kwargs.pop("remove_duplicate")
ret = list(module.named_parameters(**kwargs))
return ret
def _get_param_to_fqns(
model: torch.nn.Module,
dedup_shared_params: bool = True,
) -> Dict[nn.Parameter, List[str]]:
"""
Constructs a mapping from parameter to a list of its FQNs. Each normal
parameter maps to a singleton list containing its FQN, while each
``FlatParameter`` maps to a list of its original parameter FQNs, which may
have length greater than one. All FQNs are prefixed starting from
``model``.
Args:
model (torch.nn.Module): Root module (which may or may not be a
:class:`FullyShardedDataParallel` instance).
dedup_shared_params (bool): For shared parameters, if ``True``, only
includes the FQNs corresponding to the first encounter of the
shared parameter in the module traversal; if ``False``, then
includes the FQNs across all encounters. (Default: ``True``)
"""
def module_fn(module, prefix, tree_level, param_to_fqns):
for param_name, param in _named_parameters_with_duplicates(
module, recurse=False
):
local_fqns = (
param._fqns
if isinstance(param, flat_param_file.FlatParameter)
else [param_name]
) # prefixed from `module`
global_fqns = [
clean_tensor_name(prefix + name) for name in local_fqns
] # prefixed from the top level `model` (i.e. including `prefix`)
is_shared_param = param in param_to_fqns
if not is_shared_param:
param_to_fqns[param] = global_fqns
else:
if isinstance(param, flat_param_file.FlatParameter):
# DMP overwrites `named_parameters` and skip (advance to
# the next child module) the wrapped_module (e.g.,
# _dmp_wrapped_module and _fsdp_wrapped_module). When a user
# calls `named_child` to traverse the module recursively and
# calls `named_parameters` with `recurse=False`, parameters
# will be traversed more than once.
# This hack is specified designed for DMP + FSDP. We
# overwrite the flat_parameters traversal result to only obtain
# the last one, which happens to be the correct one.
#
# TODO: Remove this hack once DMP + FSDP is not supported.
warnings.warn(
"FlatParameter is being traversed more than once. "
"This case should only happen when using "
"DistributedModelParallel with FullyShardedDataParallel."
)
param_to_fqns[param] = global_fqns
elif not dedup_shared_params:
param_to_fqns[param].extend(global_fqns)
def return_fn(param_to_fqns):
return param_to_fqns
param_to_unflat_param_names: Dict[torch.nn.Parameter, List[str]] = {}
return _apply_to_modules(
model,
module_fn,
return_fn,
[key for key, _ in _named_parameters_with_duplicates(model)],
param_to_unflat_param_names,
)
def _apply_to_modules(
root_module: torch.nn.Module,
module_fn: Callable,
return_fn: Callable,
filter_fqns: Optional[List[str]] = None,
*args,
**kwargs,
):
"""
Performs a pre-order traversal of the modules in the hierarchy rooted at
``root_module``, applying ``module_fn`` at each module and finally
returning a value using ``return_fn``. The traversal constructs the full
module prefix name (e.g. "module.submodule." just like in model state dict)
and makes that available to ``module_fn``.
``filter_fqns`` is used because some module may have its own prefix similar
to ``FullyShardedDataParallel`` and the ``named_parameters()`` is overwritten
to remove the prefix.
"""
def f(module: torch.nn.Module, prefix: str, tree_level: int, *args, **kwargs):
# Call the module function before recursing over children (pre-order)
module_fn(module, prefix, tree_level, *args, **kwargs)
for submodule_name, submodule in module.named_children():
if submodule is None:
continue
new_prefix = prefix + submodule_name + "."
new_tree_level = tree_level + 1
if filter_fqns is not None:
for fqn in filter_fqns:
if fqn.startswith(new_prefix):
break
else:
# DMP's named_parameter() will mess up the traversal with
# ``named_children`` + `named_parameter(recurse=False)``.
# This hack is a must to make the traversal work.
# TODO: Remove this hack once DMP + FSDP is not supported.
if (
submodule_name == "_fsdp_wrapped_module"
or submodule_name == "_dmp_wrapped_module"
):
warnings.warn(
"An unexpected prefix is detected. This case "
" should only happen when using DMP with FSDP. "
f"prefix = {prefix}, "
f"submodule_name = {submodule_name}"
)
new_prefix = prefix
elif submodule_name == "module":
warnings.warn(
"An unexpected prefix is detected. This case "
" should only happen when DDP wraps the outer "
" modules while FSDP wraps the inner ones."
f"prefix = {prefix}, "
f"submodule_name = {submodule_name}"
)
new_prefix = prefix
f(submodule, new_prefix, new_tree_level, *args, **kwargs)
f(root_module, "", 0, *args, **kwargs)
return return_fn(*args, **kwargs)
@no_type_check
def _assert_in_training_states(
state: _FSDPState,
training_states: List[TrainingState],
) -> None:
"""Asserts that FSDP is in the states ``_training_states``."""
# Raise a `ValueError` instead of using `assert` to ensure that these
# logical assertions run even if `assert`s are disabled
if state.training_state not in training_states:
msg = (
f"expected to be in states {training_states} but current state is "
f"{state.training_state}"
)
# Print the error on rank 0 in case this is called in the backward pass
if state.rank == 0:
if isinstance(state, nn.Module):
print(f"Asserting FSDP instance is: {state}")
print(f"ERROR: {msg}")
traceback.print_stack()
raise ValueError(msg)
def _get_root_modules(modules: Set[nn.Module]) -> Set[nn.Module]:
"""
Returns:
Set[nn.Module]: The subset of ``modules`` that are root modules (i.e.
parent-less) with respect to the modules in the set itself. In other
words, these are the modules in ``modules`` that are not the child of
any other module in ``modules``.
"""
root_modules: Set[nn.Module] = set()
module_to_submodules = {module: set(module.modules()) for module in modules}
for candidate_module in modules:
is_root_module = True
for module, submodules in module_to_submodules.items():
is_child_module = (
candidate_module is not module and candidate_module in submodules
)
if is_child_module:
is_root_module = False
break
if is_root_module:
root_modules.add(candidate_module)
return root_modules
def _override_module_mixed_precision(
root: torch.nn.Module,
module_classes_to_override: Iterable[Type[nn.Module]],
wrap_override_dict: Dict[str, Any] = {"mixed_precision": None}, # noqa: B006
) -> Set[Type[nn.Module]]:
module_classes_to_override = tuple(set(module_classes_to_override))
# Return a set of the actually overridden module classes
overridden_module_classes: Set[Type[nn.Module]] = set()
for mod in root.modules():
if isinstance(mod, module_classes_to_override):
overridden_module_classes.add(type(mod))
mod._wrap_overrides = wrap_override_dict # type: ignore[assignment]
# TODO: We need to run this mixed precision ignored module in fp32,
# but ensure subsequent modules, that may possibly be running with
# mixed precision, still receive the appropriate precision inputs
# without user having to adjust mixed precision config too much.
# As a result, we attach pre and post forward hooks to up / down
# cast. We should revisit this design.
def cast_fn(
dtype: torch.dtype, module: nn.Module, x: torch.Tensor
) -> torch.Tensor:
if not torch.is_floating_point(x) or x.dtype == dtype:
return x
_MODULE_TO_INP_DTYPE[module] = x.dtype
return x.to(dtype)
def forward_pre_hook(module, args):
return _apply_to_tensors(partial(cast_fn, torch.float32, module), args)
def forward_post_hook(module, args, output):
# NOTE: If the forward did not have any floating-point tensors,
# then the dtype will not be set for this module, and we do not
# upcast the dtype.
if module in _MODULE_TO_INP_DTYPE:
old_dtype = _MODULE_TO_INP_DTYPE[module]
return _apply_to_tensors(
partial(cast_fn, old_dtype, module), output
)
# We intentionally append both of these hooks so that they run after
# all other hooks.
mod.register_forward_pre_hook(forward_pre_hook, prepend=False)
mod.register_forward_hook(forward_post_hook, prepend=False)
return overridden_module_classes
def _no_dispatch_record_stream(tensor: torch.Tensor, stream: torch.Stream) -> None:
# FIXME record_stream doesn't work with non-cuda tensors
if tensor.device.type not in ["cuda", torch._C._get_privateuse1_backend_name()]:
return
with no_dispatch():
tensor.record_stream(stream)
def _same_storage_as_data_ptr(x: torch.Tensor, data_ptr: int) -> bool:
return x._typed_storage()._data_ptr() == data_ptr