pytorch/tools/setup_helpers/generate_code.py
Martin Yuan 7fcf8b0a3b [Lite Interpreter] Operator registration migrate from manual to selective build (#35426)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35426

Use selective build with the full set of operators (vs. manually register each used op with "_" prefix).

Lite interpreter relies on JIT operator dispatch. In future we still need JIT operator dispatch dispatch ops that are not registered in c10.
Currently the selective build is for c10/aten dispatch in BUCK. There is JIT selective code-gen in OSS but not ported to BUCK yet.
This diff is also porting the selective code-gen in BUCK.
* The selected op list is passed to gen_jit_dispatch.py.
* The list passed to gen_jit_dispatch is the top-level ops (USED_PT_OPS) only, because the selective c10/aten dispatch already registered other ops that are called from the top-level ops.

ghstack-source-id: 101885215

(Note: this ignores all push blocking failures!)

Test Plan:
1. In Python, run torch.jit.export_opnames(scripted_M_mod)
2. Append the operator names into fbcode/caffe2/pt_ops.bzl and the BUCK target.
3. Run
```
buck run xplat/caffe2/fb/lite_predictor:lite_predictor_bi -- --model=/home/myuan/temp/bi_pytext_0315.bc --input_dims "1,4" --input_type int64 --pytext_len=4
```
Should provide expected results.
In addition, the size of the generated code for JIT registration, for example, ```register_aten_ops_0.cpp```, should be significantly reduced (from ~250 KB to ~80KB). The non-selected op registration schema are still kept, but the registration functor is replaced by ```DUMMY_OPERATION```

Reviewed By: ljk53

Differential Revision: D20408831

fbshipit-source-id: ec75dd762c4613aeda3b2094f5dad11804dc9492
2020-04-10 02:31:32 -07:00

119 lines
4.2 KiB
Python

import argparse
import os
import sys
source_files = {'.py', '.cpp', '.h'}
DECLARATIONS_PATH = 'torch/share/ATen/Declarations.yaml'
# TODO: This is a little inaccurate, because it will also pick
# up setup_helper scripts which don't affect code generation
def all_generator_source():
r = []
for directory, _, filenames in os.walk('tools'):
for f in filenames:
if os.path.splitext(f)[1] in source_files:
full = os.path.join(directory, f)
r.append(full)
return sorted(r)
def generate_code(ninja_global=None,
declarations_path=None,
nn_path=None,
install_dir=None,
subset=None,
disable_autograd=False,
selected_op_list_path=None,
selected_op_list=None,
force_schema_registration=False):
# cwrap depends on pyyaml, so we can't import it earlier
root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.insert(0, root)
from tools.autograd.gen_autograd import gen_autograd, gen_autograd_python
from tools.jit.gen_jit_dispatch import gen_jit_dispatch
# Build ATen based Variable classes
install_dir = install_dir or 'torch/csrc'
autograd_gen_dir = os.path.join(install_dir, 'autograd', 'generated')
jit_gen_dir = os.path.join(install_dir, 'jit', 'generated')
for d in (autograd_gen_dir, jit_gen_dir):
if not os.path.exists(d):
os.makedirs(d)
runfiles_dir = os.environ.get("RUNFILES_DIR", None)
data_dir = os.path.join(runfiles_dir, 'pytorch') if runfiles_dir else ''
autograd_dir = os.path.join(data_dir, 'tools', 'autograd')
tools_jit_templates = os.path.join(data_dir, 'tools', 'jit', 'templates')
if subset == "pybindings" or not subset:
gen_autograd_python(declarations_path or DECLARATIONS_PATH, autograd_gen_dir, autograd_dir)
if subset == "libtorch" or not subset:
# TODO: add selected op mechanism in augotrad to save learning size
gen_autograd(
declarations_path or DECLARATIONS_PATH,
autograd_gen_dir,
autograd_dir,
disable_autograd=disable_autograd,
)
gen_jit_dispatch(
declarations_path or DECLARATIONS_PATH,
jit_gen_dir,
tools_jit_templates,
disable_autograd=disable_autograd,
selected_op_list_path=selected_op_list_path,
selected_op_list=selected_op_list,
force_schema_registration=force_schema_registration)
def main():
parser = argparse.ArgumentParser(description='Autogenerate code')
parser.add_argument('--declarations-path')
parser.add_argument('--nn-path')
parser.add_argument('--ninja-global')
parser.add_argument('--install_dir')
parser.add_argument(
'--subset',
help='Subset of source files to generate. Can be "libtorch" or "pybindings". Generates both when omitted.'
)
parser.add_argument(
'--disable-autograd',
default=False,
action='store_true',
help='It can skip generating autograd related code when the flag is set',
)
parser.add_argument(
'--selected-op-list-path',
help='Path to the yaml file that contains the list of operators to include for custom build.',
)
parser.add_argument(
'--selected-op-list',
nargs="*",
type=str,
help="""List of operator names to include for custom build, in addition to those in selected-op-list-path.
For example, --selected-op-list aten::add.Tensor aten::_convolution.""",
)
parser.add_argument(
'--force_schema_registration',
action='store_true',
help='force it to generate schema-only registrations for ops that are not'
'listed on --selected-op-list'
)
options = parser.parse_args()
generate_code(
options.ninja_global,
options.declarations_path,
options.nn_path,
options.install_dir,
options.subset,
options.disable_autograd,
options.selected_op_list_path,
options.selected_op_list,
options.force_schema_registration,
)
if __name__ == "__main__":
main()