mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/25187 The bytecode export flow: dump the bytecode format for the light weighted interpreter. * The bytecode is generated without input spec optimization. It would be more generic (input independent) with no obvious performance degradation (to be tested). * Main API: torch::jit::script::Module::save(filename, extra_files, bool *bytecode_format* = false). * Both bytecode and module object are exported in pickle format. * The module object (in data.pkl) is the same as the original JIT model. * The serializer is dependent on pickle only (no protobuf or Json). * The major functionality is forked in ScriptModuleSerializer2::serialize(). * The test loader is test_bc_export.cpp. * Simple APIs are added in Code and its implementation to get necessary information (instructions, operators and constants). * Since there's no dependency on graph/node, GetAttr is promoted from an operator to first-class instruction (https://github.com/pytorch/pytorch/pull/25151) . * Some definitions (instructions, writeArchive, etc) that are shared by full JIT and bytecode are pulled out of the local namespace (https://github.com/pytorch/pytorch/pull/25148). The output layout looks like: * folders of methods. * In each method folder (for example, forward/): * bytecode.pkl: instructions and operators * constants{.pkl,/}: constant list in constants.pkl. If there are tensors in constants, the binary tensor files in constants/ folder. * data{.pkl,/}: the module object, with binary tensor files in data/ folder. The same as in torchscript. Test Plan: Imported from OSS Differential Revision: D17076411 fbshipit-source-id: 46eb298e7320d1e585b0101effc0fcfd09219046
41 lines
1.2 KiB
C++
41 lines
1.2 KiB
C++
#include "function.h"
|
|
#include "interpreter.h"
|
|
|
|
namespace torch{
|
|
namespace jit{
|
|
namespace mobile {
|
|
Function::Function(c10::QualifiedName name)
|
|
: name_(name), code_(std::make_shared<Code>()) {}
|
|
|
|
void Function::append_instruction(OpCode op, int N, int X) {
|
|
code_->instructions_.emplace_back(op, N, X);
|
|
}
|
|
|
|
void Function::append_operator(const std::string& name,
|
|
const std::string& overload_name) {
|
|
code_->op_names_.emplace_back(name, overload_name);
|
|
auto opname = code_->op_names_.back();
|
|
// Add "_" prefix to work around the double registration both of jit/generated
|
|
// and here. TODO: remove it when we have separate build for lite interpreter.
|
|
opname.name = "_" + opname.name;
|
|
auto op = c10::Dispatcher::singleton().findSchema(opname);
|
|
assert(op.has_value());
|
|
code_->operators_.emplace_back(op);
|
|
}
|
|
|
|
void Function::append_constant(const c10::IValue& constant) {
|
|
code_->constants_.push_back(constant);
|
|
}
|
|
|
|
void Function::set_register_size(size_t size) {
|
|
code_->register_size_ = size;
|
|
}
|
|
|
|
bool Function::run(Stack& stack) const {
|
|
InterpreterState interp_state(code_);
|
|
return interp_state.run(stack);
|
|
}
|
|
} // namespace mobile
|
|
} // namespace torch
|
|
} // namespace jit
|