mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Fixes #112633 Fixed errors relating to pydocstyle in the following files. The remaining errors are not covered in this issue. `torch/utils/dlpack.py` was not modified as the errors are relating to the function signature in the first line in the docstring which must be maintained as is for proper Sphinx interpretation. ```python def from_dlpack(ext_tensor: Any) -> 'torch.Tensor': """from_dlpack(ext_tensor) -> Tensor ..... """ ``` pydocstyle torch/utils/_contextlib.py --count before: 4 after: 0 pydocstyle torch/backends/mps/__init__.py --count before: 8 after: 1 **remaining errors** ``` torch/backends/mps/__init__.py:1 at module level: D104: Missing docstring in public package ``` pydocstyle torch/backends/xeon/run_cpu.py --count before: 13 after: 1 **remaining errors** ``` torch/backends/xeon/run_cpu.py:864 in public function `main`: D103: Missing docstring in public function ``` pydocstyle torch/backends/cpu/__init__.py --count before: 2 after: 1 **remaining errors** ``` torch/backends/cpu/__init__.py:1 at module level: D104: Missing docstring in public package ``` pydocstyle torch/utils/cpp_backtrace.py --count before: 4 after: 1 **remaining errors** ``` torch/utils/cpp_backtrace.py:1 at module level: D100: Missing docstring in public module ``` pydocstyle torch/utils/bundled_inputs.py --count before: 8 after: 1 **remaining errors** ``` torch/utils/bundled_inputs.py:1 at module level: D100: Missing docstring in public module ``` pydocstyle torch/utils/file_baton.py --count before: 8 after: 1 **remaining errors** ``` torch/utils/file_baton.py:1 at module level: D100: Missing docstring in public module ``` pydocstyle torch/utils/mobile_optimizer.py --count before: 6 after: 1 **remaining errors** ``` torch/utils/mobile_optimizer.py:8 in public class `LintCode`: D101: Missing docstring in public class ``` pydocstyle torch/backends/opt_einsum/__init__.py --count before: 7 after: 5 **remaining errors** ``` torch/backends/opt_einsum/__init__.py:1 at module level: D104: Missing docstring in public package torch/backends/opt_einsum/__init__.py:67 in public function `set_flags`: D103: Missing docstring in public function torch/backends/opt_einsum/__init__.py:77 in public function `flags`: D103: Missing docstring in public function torch/backends/opt_einsum/__init__.py:93 in public class `OptEinsumModule`: D101: Missing docstring in public class torch/backends/opt_einsum/__init__.py:94 in public method `__init__`: D107: Missing docstring in __init__ ``` pydocstyle torch/utils/_device.py --count before: 9 after: 6 **remaining errors** ``` torch/utils/_device.py:58 in public class `DeviceContext`: D101: Missing docstring in public class torch/utils/_device.py:59 in public method `__init__`: D107: Missing docstring in __init__ torch/utils/_device.py:62 in public method `__enter__`: D105: Missing docstring in magic method torch/utils/_device.py:68 in public method `__exit__`: D105: Missing docstring in magic method torch/utils/_device.py:73 in public method `__torch_function__`: D105: Missing docstring in magic method torch/utils/_device.py:80 in public function `device_decorator`: D103: Missing docstring in public function ``` pydocstyle torch/utils/_freeze.py --count before: 15 after: 7 **remaining errors** ``` torch/utils/_freeze.py:77 in public function `indent_msg`: D103: Missing docstring in public function torch/utils/_freeze.py:89 in public class `FrozenModule`: D101: Missing docstring in public class torch/utils/_freeze.py:100 in public class `Freezer`: D101: Missing docstring in public class torch/utils/_freeze.py:101 in public method `__init__`: D107: Missing docstring in __init__ torch/utils/_freeze.py:106 in public method `msg`: D102: Missing docstring in public method torch/utils/_freeze.py:185 in public method `get_module_qualname`: D102: Missing docstring in public method torch/utils/_freeze.py:206 in public method `compile_string`: D102: Missing docstring in public method ``` pydocstyle torch/utils/throughput_benchmark.py --count before: 25 after: 8 **remaining errors** ``` torch/utils/throughput_benchmark.py:1 at module level: D100: Missing docstring in public module torch/utils/throughput_benchmark.py:27 in public class `ExecutionStats`: D101: Missing docstring in public class torch/utils/throughput_benchmark.py:28 in public method `__init__`: D107: Missing docstring in __init__ torch/utils/throughput_benchmark.py:33 in public method `latency_avg_ms`: D102: Missing docstring in public method torch/utils/throughput_benchmark.py:37 in public method `num_iters`: D102: Missing docstring in public method torch/utils/throughput_benchmark.py:46 in public method `total_time_seconds`: D102: Missing docstring in public method torch/utils/throughput_benchmark.py:50 in public method `__str__`: D105: Missing docstring in magic method torch/utils/throughput_benchmark.py:94 in public method `__init__`: D107: Missing docstring in __init__ ``` pydocstyle torch/utils/hooks.py --count before: 14 after: 11 **remaining errors** ``` torch/utils/hooks.py:1 at module level: D100: Missing docstring in public module torch/utils/hooks.py:23 in public method `__init__`: D107: Missing docstring in __init__ torch/utils/hooks.py:34 in public method `remove`: D102: Missing docstring in public method torch/utils/hooks.py:44 in public method `__getstate__`: D105: Missing docstring in magic method torch/utils/hooks.py:50 in public method `__setstate__`: D105: Missing docstring in magic method torch/utils/hooks.py:64 in public method `__enter__`: D105: Missing docstring in magic method torch/utils/hooks.py:67 in public method `__exit__`: D105: Missing docstring in magic method torch/utils/hooks.py:82 in public function `warn_if_has_hooks`: D103: Missing docstring in public function torch/utils/hooks.py:103 in public method `__init__`: D107: Missing docstring in __init__ torch/utils/hooks.py:188 in public method `setup_input_hook`: D102: Missing docstring in public method torch/utils/hooks.py:197 in public method `setup_output_hook`: D102: Missing docstring in public method ``` pydocstyle torch/utils/_traceback.py --count before: 19 after: 14 **remaining errors** ``` torch/utils/_traceback.py:47 in public function `report_compile_source_on_error`: D103: Missing docstring in public function torch/utils/_traceback.py:160 in public class `CapturedTraceback`: D101: Missing docstring in public class torch/utils/_traceback.py:163 in public method `__init__`: D107: Missing docstring in __init__ torch/utils/_traceback.py:167 in public method `cleanup`: D102: Missing docstring in public method torch/utils/_traceback.py:170 in public method `summary`: D102: Missing docstring in public method torch/utils/_traceback.py:182 in public method `__getstate__`: D105: Missing docstring in magic method torch/utils/_traceback.py:190 in public method `extract`: D205: 1 blank line required between summary line and description (found 0) torch/utils/_traceback.py:190 in public method `extract`: D400: First line should end with a period (not 't') torch/utils/_traceback.py:213 in public method `format`: D205: 1 blank line required between summary line and description (found 0) torch/utils/_traceback.py:213 in public method `format`: D400: First line should end with a period (not 'f') torch/utils/_traceback.py:213 in public method `format`: D401: First line should be in imperative mood (perhaps 'Format', not 'Formats') torch/utils/_traceback.py:224 in public method `format_all`: D200: One-line docstring should fit on one line with quotes (found 3) torch/utils/_traceback.py:247 in private function `_extract_symbolized_tb`: D205: 1 blank line required between summary line and description (found 0) torch/utils/_traceback.py:247 in private function `_extract_symbolized_tb`: D400: First line should end with a period (not 'f') ``` pydocstyle torch/utils/mkldnn.py --count before: 28 after: 26 **remaining errors** ``` torch/utils/mkldnn.py:1 at module level: D100: Missing docstring in public module torch/utils/mkldnn.py:4 in public class `MkldnnLinear`: D101: Missing docstring in public class torch/utils/mkldnn.py:5 in public method `__init__`: D107: Missing docstring in __init__ torch/utils/mkldnn.py:19 in public method `__getstate__`: D105: Missing docstring in magic method torch/utils/mkldnn.py:23 in public method `__setstate__`: D105: Missing docstring in magic method torch/utils/mkldnn.py:29 in public method `forward`: D102: Missing docstring in public method torch/utils/mkldnn.py:75 in public class `MkldnnConv1d`: D101: Missing docstring in public class torch/utils/mkldnn.py:76 in public method `__init__`: D107: Missing docstring in __init__ torch/utils/mkldnn.py:82 in public method `__setstate__`: D105: Missing docstring in magic method torch/utils/mkldnn.py:88 in public class `MkldnnConv2d`: D101: Missing docstring in public class torch/utils/mkldnn.py:89 in public method `__init__`: D107: Missing docstring in __init__ torch/utils/mkldnn.py:100 in public method `__setstate__`: D105: Missing docstring in magic method torch/utils/mkldnn.py:110 in public class `MkldnnConv3d`: D101: Missing docstring in public class torch/utils/mkldnn.py:111 in public method `__init__`: D107: Missing docstring in __init__ torch/utils/mkldnn.py:122 in public method `__setstate__`: D105: Missing docstring in magic method torch/utils/mkldnn.py:133 in public class `MkldnnBatchNorm`: D101: Missing docstring in public class torch/utils/mkldnn.py:136 in public method `__init__`: D107: Missing docstring in __init__ torch/utils/mkldnn.py:155 in public method `__getstate__`: D105: Missing docstring in magic method torch/utils/mkldnn.py:163 in public method `__setstate__`: D105: Missing docstring in magic method torch/utils/mkldnn.py:171 in public method `forward`: D102: Missing docstring in public method torch/utils/mkldnn.py:184 in public class `MkldnnPrelu`: D101: Missing docstring in public class torch/utils/mkldnn.py:185 in public method `__init__`: D107: Missing docstring in __init__ torch/utils/mkldnn.py:190 in public method `__getstate__`: D105: Missing docstring in magic method torch/utils/mkldnn.py:194 in public method `__setstate__`: D105: Missing docstring in magic method torch/utils/mkldnn.py:199 in public method `forward`: D102: Missing docstring in public method torch/utils/mkldnn.py:205 in public function `to_mkldnn`: D103: Missing docstring in public function ``` pydocstyle torch/utils/weak.py --count before: 32 after: 30 **remaining errors** ``` torch/utils/weak.py:1 at module level: D100: Missing docstring in public module torch/utils/weak.py:42 in public class `WeakIdRef`: D101: Missing docstring in public class torch/utils/weak.py:45 in public method `__init__`: D107: Missing docstring in __init__ torch/utils/weak.py:54 in public method `__call__`: D102: Missing docstring in public method torch/utils/weak.py:61 in public method `__hash__`: D105: Missing docstring in magic method torch/utils/weak.py:64 in public method `__eq__`: D105: Missing docstring in magic method torch/utils/weak.py:84 in public class `WeakIdKeyDictionary`: D101: Missing docstring in public class torch/utils/weak.py:87 in public method `__init__`: D107: Missing docstring in __init__ torch/utils/weak.py:131 in public method `__delitem__`: D105: Missing docstring in magic method torch/utils/weak.py:135 in public method `__getitem__`: D105: Missing docstring in magic method torch/utils/weak.py:138 in public method `__len__`: D105: Missing docstring in magic method torch/utils/weak.py:145 in public method `__repr__`: D105: Missing docstring in magic method torch/utils/weak.py:148 in public method `__setitem__`: D105: Missing docstring in magic method torch/utils/weak.py:151 in public method `copy`: D102: Missing docstring in public method torch/utils/weak.py:162 in public method `__deepcopy__`: D105: Missing docstring in magic method torch/utils/weak.py:172 in public method `get`: D102: Missing docstring in public method torch/utils/weak.py:175 in public method `__contains__`: D105: Missing docstring in magic method torch/utils/weak.py:182 in public method `items`: D102: Missing docstring in public method torch/utils/weak.py:189 in public method `keys`: D102: Missing docstring in public method torch/utils/weak.py:198 in public method `values`: D102: Missing docstring in public method torch/utils/weak.py:216 in public method `popitem`: D102: Missing docstring in public method torch/utils/weak.py:224 in public method `pop`: D102: Missing docstring in public method torch/utils/weak.py:228 in public method `setdefault`: D102: Missing docstring in public method torch/utils/weak.py:231 in public method `update`: D102: Missing docstring in public method torch/utils/weak.py:241 in public method `__ior__`: D105: Missing docstring in magic method torch/utils/weak.py:245 in public method `__or__`: D105: Missing docstring in magic method torch/utils/weak.py:252 in public method `__ror__`: D105: Missing docstring in magic method torch/utils/weak.py:262 in public method `__eq__`: D105: Missing docstring in magic method torch/utils/weak.py:276 in public method `__init__`: D107: Missing docstring in __init__ torch/utils/weak.py:280 in public method `__call__`: D102: Missing docstring in public method ``` @mikaylagawarecki @jbschlosser @svekars Pull Request resolved: https://github.com/pytorch/pytorch/pull/113311 Approved by: https://github.com/ezyang
136 lines
6.3 KiB
Python
136 lines
6.3 KiB
Python
"""This module contains utility method for mobile model optimization and lint."""
|
|
|
|
import torch
|
|
from enum import Enum
|
|
from torch._C import _MobileOptimizerType as MobileOptimizerType
|
|
from typing import Optional, Set, List, AnyStr
|
|
|
|
class LintCode(Enum):
|
|
BUNDLED_INPUT = 1
|
|
REQUIRES_GRAD = 2
|
|
DROPOUT = 3
|
|
BATCHNORM = 4
|
|
|
|
def optimize_for_mobile(
|
|
script_module: torch.jit.ScriptModule,
|
|
optimization_blocklist: Optional[Set[MobileOptimizerType]] = None,
|
|
preserved_methods: Optional[List[AnyStr]] = None,
|
|
backend: str = 'CPU') -> torch.jit.RecursiveScriptModule:
|
|
"""
|
|
Optimize a torch script module for mobile deployment.
|
|
|
|
Args:
|
|
script_module: An instance of torch script module with type of ScriptModule.
|
|
optimization_blocklist: A set with type of MobileOptimizerType. When set is not passed,
|
|
optimization method will run all the optimizer pass; otherwise, optimizer
|
|
method will run the optimization pass that is not included inside optimization_blocklist.
|
|
preserved_methods: A list of methods that needed to be preserved when freeze_module pass is invoked
|
|
backend: Device type to use for running the result model ('CPU'(default), 'Vulkan' or 'Metal').
|
|
Returns:
|
|
A new optimized torch script module
|
|
"""
|
|
if not isinstance(script_module, torch.jit.ScriptModule):
|
|
raise TypeError(
|
|
f'Got {type(script_module)}, but ScriptModule is expected.')
|
|
|
|
if optimization_blocklist is None:
|
|
optimization_blocklist = set()
|
|
|
|
if preserved_methods is None:
|
|
preserved_methods = []
|
|
|
|
# Convert potential byte arrays into strings (if there is any) to pass type checking
|
|
# Here we use a new name as assigning it back to preserved_methods will invoke
|
|
# mypy errors (i.e. List[AnyStr] = List[str])
|
|
preserved_methods_str: List[str] = [str(method) for method in preserved_methods]
|
|
|
|
bundled_inputs_attributes = _get_bundled_inputs_preserved_attributes(script_module, preserved_methods_str)
|
|
if all(hasattr(script_module, method) for method in bundled_inputs_attributes):
|
|
preserved_methods_str = list(set(preserved_methods_str + bundled_inputs_attributes))
|
|
|
|
non_exist_methods = []
|
|
for method in preserved_methods_str:
|
|
if not hasattr(script_module, method):
|
|
non_exist_methods.append(method)
|
|
if non_exist_methods:
|
|
raise AttributeError(
|
|
f"The following methods to preserve do not exist in script_module: {', '.join(non_exist_methods)}")
|
|
|
|
backend = backend.lower()
|
|
if backend == 'cpu':
|
|
optimized_cpp_module = torch._C._jit_pass_optimize_for_mobile(
|
|
script_module._c,
|
|
optimization_blocklist,
|
|
preserved_methods_str)
|
|
elif backend == 'vulkan':
|
|
optimized_cpp_module = torch._C._jit_pass_vulkan_optimize_for_mobile(
|
|
script_module._c,
|
|
optimization_blocklist,
|
|
preserved_methods_str)
|
|
elif backend == 'metal':
|
|
optimized_cpp_module = torch._C._jit_pass_metal_optimize_for_mobile(script_module._c, preserved_methods_str)
|
|
else:
|
|
raise TypeError("Unknown backend, must be one of 'CPU', 'Vulkan' or 'Metal'")
|
|
|
|
return torch.jit._recursive.wrap_cpp_module(optimized_cpp_module)
|
|
|
|
|
|
def generate_mobile_module_lints(script_module: torch.jit.ScriptModule):
|
|
"""
|
|
Generate a list of lints for a given torch script module.
|
|
|
|
Args:
|
|
script_module: An instance of torch script module with type of ScriptModule.
|
|
|
|
Returns:
|
|
lint_map: A list of dictionary that contains modules lints
|
|
"""
|
|
if not isinstance(script_module, torch.jit.ScriptModule):
|
|
raise TypeError(
|
|
f'Got {type(script_module)}, but ScriptModule is expected.')
|
|
|
|
lint_list = []
|
|
|
|
if not hasattr(script_module, "_generate_bundled_inputs_for_forward"):
|
|
lint_list.append({"name": LintCode.BUNDLED_INPUT.name, "message": "No bundled input for forward, please add bundled inputs "
|
|
"before saving the module using torch.utils.bundled_inputs.augment_model_with_bundled_inputs."})
|
|
|
|
for name, param in script_module.named_parameters():
|
|
if param.requires_grad:
|
|
lint_list.append({"name": LintCode.REQUIRES_GRAD.name, "message": f"Param {name} requires grad, "
|
|
"please set torch.no_grad() to reduce memory usage and improve computation speed during "
|
|
"inference phase."})
|
|
|
|
op_names = torch.jit.export_opnames(script_module)
|
|
for op_name in op_names:
|
|
if "dropout" in op_name:
|
|
lint_list.append({"name": LintCode.DROPOUT.name, "message": "Operator {} exists, remember to call eval() before "
|
|
"saving the module.and call torch.utils.mobile_optimizer.optimize_for_mobile to drop dropout "
|
|
"operator.".format(op_name)})
|
|
if "batch_norm" in op_name:
|
|
lint_list.append({"name": LintCode.BATCHNORM.name, "message": "Operator {} exists, remember to call eval() before "
|
|
"saving the module and call torch.utils.mobile_optimizer.optimize_for_mobile to drop batch_norm "
|
|
"operator.".format(op_name)})
|
|
|
|
return lint_list
|
|
|
|
def _get_bundled_inputs_preserved_attributes(script_module: torch.jit.ScriptModule, preserved_methods: List[str]) -> List[str]:
|
|
|
|
bundled_inputs_attributes = []
|
|
# Has bundled inputs for forward
|
|
if hasattr(script_module, 'get_all_bundled_inputs'):
|
|
bundled_inputs_attributes.append('get_all_bundled_inputs')
|
|
bundled_inputs_attributes.append('get_num_bundled_inputs')
|
|
|
|
# Bundled inputs in module after the change that introduced bundled inputs for multiple functions
|
|
if hasattr(script_module, 'get_bundled_inputs_functions_and_info'):
|
|
bundled_inputs_attributes.append('get_bundled_inputs_functions_and_info')
|
|
all_info = script_module.get_bundled_inputs_functions_and_info()
|
|
for function_name in all_info:
|
|
if function_name not in preserved_methods:
|
|
bundled_inputs_attributes.append(function_name)
|
|
bundled_inputs_attributes.append("get_all_bundled_inputs_for_" + function_name)
|
|
bundled_inputs_attributes.append("_bundled_inputs_deflated_" + function_name)
|
|
|
|
return bundled_inputs_attributes
|