pytorch/torch/quantization/quantization_mappings.py
Jerry Zhang 0da6730f02 [quant][graphmode][fx][eagermode] Add leaky relu support in quantization workflows (#45712)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45712

Eager mode will still be able to use functional leaky relu, but it will be less accurate than
LeakyReLU module.
FX graph mode will support both leaky relu functional and module

Test Plan: Imported from OSS

Reviewed By: z-a-f

Differential Revision: D24069961

fbshipit-source-id: 8d91c3c50c0bcd068ba3072378ebb4da9549be3b
2020-10-06 12:16:04 -07:00

192 lines
7.2 KiB
Python

import torch
from torch import nn
import torch.nn.functional as F
import torch.nn.intrinsic as nni
import torch.nn.intrinsic.quantized as nniq
import torch.nn.intrinsic.qat as nniqat
import torch.nn.quantized as nnq
import torch.nn.quantized.dynamic as nnqd
import torch.nn.qat as nnqat
from .stubs import QuantStub, DeQuantStub
# Map for swapping float module to quantized ones
STATIC_QUANT_MODULE_MAPPINGS = {
nn.Linear: nnq.Linear,
nn.ReLU: nnq.ReLU,
nn.ReLU6: nnq.ReLU6,
nn.Hardswish: nnq.Hardswish,
nn.ELU: nnq.ELU,
nn.LeakyReLU: nnq.LeakyReLU,
nn.Conv1d: nnq.Conv1d,
nn.Conv2d: nnq.Conv2d,
nn.Conv3d: nnq.Conv3d,
nn.ConvTranspose1d: nnq.ConvTranspose1d,
nn.ConvTranspose2d: nnq.ConvTranspose2d,
nn.BatchNorm2d: nnq.BatchNorm2d,
nn.BatchNorm3d: nnq.BatchNorm3d,
nn.LayerNorm: nnq.LayerNorm,
nn.GroupNorm: nnq.GroupNorm,
nn.InstanceNorm1d: nnq.InstanceNorm1d,
nn.InstanceNorm2d: nnq.InstanceNorm2d,
nn.InstanceNorm3d: nnq.InstanceNorm3d,
nn.Embedding: nnq.Embedding,
nn.EmbeddingBag: nnq.EmbeddingBag,
QuantStub: nnq.Quantize,
DeQuantStub: nnq.DeQuantize,
# Wrapper Modules:
nnq.FloatFunctional: nnq.QFunctional,
# Intrinsic modules:
nni.ConvReLU1d: nniq.ConvReLU1d,
nni.ConvReLU2d: nniq.ConvReLU2d,
nni.ConvReLU3d: nniq.ConvReLU3d,
nni.LinearReLU: nniq.LinearReLU,
nni.BNReLU2d: nniq.BNReLU2d,
nni.BNReLU3d: nniq.BNReLU3d,
nniqat.ConvReLU2d: nniq.ConvReLU2d,
nniqat.LinearReLU: nniq.LinearReLU,
nniqat.ConvBn2d: nnq.Conv2d,
nniqat.ConvBnReLU2d: nniq.ConvReLU2d,
# QAT modules:
nnqat.Linear: nnq.Linear,
nnqat.Conv2d: nnq.Conv2d,
}
# Map for swapping float module to qat modules
QAT_MODULE_MAPPINGS = {
nn.Linear: nnqat.Linear,
nn.Conv2d: nnqat.Conv2d,
# Intrinsic modules:
nni.ConvBn2d: nniqat.ConvBn2d,
nni.ConvBnReLU2d: nniqat.ConvBnReLU2d,
nni.ConvReLU2d: nniqat.ConvReLU2d,
nni.LinearReLU: nniqat.LinearReLU
}
# Map for swapping dynamic modules
DYNAMIC_QUANT_MODULE_MAPPINGS = {
nn.Linear: nnqd.Linear,
nn.LSTM: nnqd.LSTM,
nn.LSTMCell: nnqd.LSTMCell,
nn.RNNCell: nnqd.RNNCell,
nn.GRUCell: nnqd.GRUCell,
}
# Whitelist for propagating the qconfig
_EXCLUDE_QCONFIG_PROPAGATE_LIST = {
DeQuantStub,
}
_INCLUDE_QCONFIG_PROPAGATE_LIST = {
nn.Sequential,
}
# mapping from floating point function or torch ops to quantized ops
FLOAT_TO_QUANTIZED_OPERATOR_MAPPINGS = {
F.elu: torch._ops.ops.quantized.elu,
F.leaky_relu: torch._ops.ops.quantized.leaky_relu,
F.hardswish: torch._ops.ops.quantized.hardswish,
F.instance_norm: torch._ops.ops.quantized.instance_norm,
F.layer_norm: torch._ops.ops.quantized.layer_norm,
}
def register_static_quant_module_mapping(
float_source_module_class, static_quant_target_module_class):
''' Register a mapping from `float_source__module_class` to `static_quant_target_module_class`
`static_quant_target_module_class` must have from_float defined as a class method
The mapping is used in the convert step of post training static quantization to
convert a float module to a statically quantized module.
'''
assert hasattr(static_quant_target_module_class, 'from_float'), 'from_float must be defined' + \
' in quantized module class'
STATIC_QUANT_MODULE_MAPPINGS[float_source_module_class] = static_quant_target_module_class
def get_static_quant_module_mappings():
''' Get module mapping for post training static quantization
'''
return STATIC_QUANT_MODULE_MAPPINGS
def get_static_quant_module_class(float_module_class):
''' Get the statically quantized module class corresponding to
the floating point module class
'''
static_quant_module_class = STATIC_QUANT_MODULE_MAPPINGS.get(float_module_class, None)
assert static_quant_module_class is not None, \
'Floating point module class {}'.format(float_module_class) + \
' does not have a corresponding quantized module class'
return static_quant_module_class
def register_qat_module_mapping(float_source_module_class, qat_target_module_class):
'''Register a mapping from `float_source_module_class` to `qat_target_module_class`,
`qat_target_module_class` must have from_float defined as a class method
This mapping is used in prepare step of quantization aware training to swap
a float module to a qat module.
'''
assert hasattr(qat_target_module_class, 'from_float'), 'from_float must be defined' + \
' in qat module class'
QAT_MODULE_MAPPINGS[float_source_module_class] = qat_target_module_class
def get_qat_module_mappings():
''' Get module mapping for quantization aware training
'''
return QAT_MODULE_MAPPINGS
def register_dynamic_quant_module_class(float_source_module_class, dynamic_quant_target_module_class):
''' Register a mapping from `float_source_module_class` to `dynamic_quant_target_module_class`,
`dynamic_quant_target_module_class` must have from_float defined as a class method
This mapping is used in convert step of post training dynamic
quantization to swap a float module to a dynamically quantized
module.
'''
assert hasattr(dynamic_quant_target_module_class, 'from_float'), 'from_float must be defined' + \
' in dynamically quantized module type'
DYNAMIC_QUANT_MODULE_MAPPINGS[float_source_module_class] = dynamic_quant_target_module_class
def get_dynamic_quant_module_mappings():
''' Get module mapping for post training dynamic quantization
'''
return DYNAMIC_QUANT_MODULE_MAPPINGS
def get_qconfig_propagation_list():
''' Get the list of module types that we'll attach qconfig
attribute to in prepare
'''
QCONFIG_PROPAGATE_MODULE_CLASS_LIST = (
(set(STATIC_QUANT_MODULE_MAPPINGS.keys()) |
set(QAT_MODULE_MAPPINGS.keys()) |
set(DYNAMIC_QUANT_MODULE_MAPPINGS.keys()) |
_INCLUDE_QCONFIG_PROPAGATE_LIST) -
_EXCLUDE_QCONFIG_PROPAGATE_LIST
)
return QCONFIG_PROPAGATE_MODULE_CLASS_LIST
def get_compare_output_module_list():
''' Get list of module class types that we will record output
in numeric suite
'''
NUMERIC_SUITE_COMPARE_MODEL_OUTPUT_MODULE_LIST = (
set(STATIC_QUANT_MODULE_MAPPINGS.values())
| set(QAT_MODULE_MAPPINGS.values())
| set(DYNAMIC_QUANT_MODULE_MAPPINGS.values())
| set(STATIC_QUANT_MODULE_MAPPINGS.keys())
| set(QAT_MODULE_MAPPINGS.keys())
| set(DYNAMIC_QUANT_MODULE_MAPPINGS.keys())
| _INCLUDE_QCONFIG_PROPAGATE_LIST
) - _EXCLUDE_QCONFIG_PROPAGATE_LIST
return NUMERIC_SUITE_COMPARE_MODEL_OUTPUT_MODULE_LIST
def register_quantized_operator_mapping(float_op, quantized_op):
''' Register a mapping from `floating_point_op` (torch or functional) to `quantized_op`
This is used in convert step of fx based graph mode quantization
to convert a float op to quantized op.
'''
FLOAT_TO_QUANTIZED_OPERATOR_MAPPINGS[float_op] = quantized_op
def get_quantized_operator(float_op):
''' Get the quantized operator corresponding to the float operator
'''
quantized_op = FLOAT_TO_QUANTIZED_OPERATOR_MAPPINGS.get(float_op, None)
assert quantized_op is not None, \
'Operator {} does not have corresponding quantized op'.format(float_op)
return quantized_op