mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: This PR implements the design that we discussed. Changes: - Added a World token IValue and type. The IValue is basically a dummy struct for now, in the future we may extend it (say, add thread-local state). - Effectful ops explicitly declare they are mutable by having World tokens as inputs and outputs in their schema. - Purely functional ops that use mutable values will get "fenced" and the world token will be threaded through the fences - AnnotateEffects pass which wires up all the world tokens together. Pull Request resolved: https://github.com/pytorch/pytorch/pull/10700 Reviewed By: eellison Differential Revision: D9547881 Pulled By: michaelsuo fbshipit-source-id: ebbd786c31f15bf45e2ddb0c188438ff2f5f3c88
446 lines
13 KiB
C++
446 lines
13 KiB
C++
#include "ATen/ATen.h"
|
|
#include "torch/csrc/jit/script/lexer.h"
|
|
#include "torch/csrc/jit/script/tree.h"
|
|
#include "torch/csrc/jit/operator.h"
|
|
|
|
#include "torch/csrc/jit/script/error_report.h"
|
|
|
|
namespace torch { namespace jit {
|
|
|
|
namespace script {
|
|
struct SchemaParser {
|
|
SchemaParser(const std::string& str)
|
|
: L(str) {}
|
|
|
|
FunctionSchema parseDeclaration() {
|
|
auto name = L.expect(TK_IDENT).text();
|
|
if(L.nextIf(':')) {
|
|
L.expect(':');
|
|
name = name + "::" + L.expect(TK_IDENT).text();
|
|
}
|
|
std::vector<Argument> arguments;
|
|
std::vector<Argument> returns;
|
|
kwarg_only = false;
|
|
parseList('(', ',', ')', arguments, &SchemaParser::parseArgument);
|
|
L.expect(TK_ARROW);
|
|
if (L.cur().kind == '(') {
|
|
parseList('(', ',', ')', returns, &SchemaParser::parseArgumentType);
|
|
} else {
|
|
parseArgumentType(returns);
|
|
}
|
|
for (size_t i = 0; i < returns.size(); ++i) {
|
|
returns[i].name = "ret" + std::to_string(i);
|
|
}
|
|
return FunctionSchema { name, arguments, returns };
|
|
}
|
|
|
|
std::vector<FunctionSchema> parseDeclarations() {
|
|
std::vector<FunctionSchema> results;
|
|
do {
|
|
results.push_back(parseDeclaration());
|
|
} while(L.nextIf(TK_NEWLINE));
|
|
L.expect(TK_EOF);
|
|
return results;
|
|
}
|
|
|
|
TreeRef parseIdent() {
|
|
return String::create(L.expect(TK_IDENT).text());
|
|
}
|
|
TypePtr parseBaseType() {
|
|
static std::unordered_map<std::string, TypePtr> type_map = {
|
|
{"Tensor", DynamicType::get() },
|
|
{"Generator", GeneratorType::get() },
|
|
{"ScalarType", IntType::get() },
|
|
{"Layout", IntType::get() },
|
|
{"Device", ListType::ofInts() },
|
|
{"Scalar", NumberType::get() },
|
|
{"str", StringType::get() },
|
|
{"float", FloatType::get() },
|
|
{"int", IntType::get() },
|
|
{"bool", IntType::get() }, // TODO: add separate bool type
|
|
{"World", WorldType::get() },
|
|
};
|
|
auto tok = L.expect(TK_IDENT);
|
|
auto text = tok.text();
|
|
auto it = type_map.find(text);
|
|
if(it == type_map.end()) {
|
|
if(text.size() > 0 && islower(text[0])) {
|
|
// lower case identifiers that are not otherwise valid types
|
|
// are treated as type variables
|
|
return VarType::create(text);
|
|
}
|
|
throw ErrorReport(tok.range) << "unknown type specifier";
|
|
}
|
|
return it->second;
|
|
}
|
|
void parseArgumentType(std::vector<Argument>& arguments) {
|
|
Argument result;
|
|
if (L.cur().kind == '(') {
|
|
std::vector<Argument> nestedArgs;
|
|
parseList('(', ',', ')', nestedArgs, &SchemaParser::parseArgumentType);
|
|
auto types = fmap(
|
|
nestedArgs, [](const Argument& argument) { return argument.type; });
|
|
result.type = TupleType::create(std::move(types));
|
|
} else {
|
|
result.type = parseBaseType();
|
|
if(L.nextIf('[')) {
|
|
result.type = ListType::create(result.type);
|
|
if(L.cur().kind == TK_NUMBER) {
|
|
result.N = std::stoll(L.next().text());
|
|
}
|
|
L.expect(']');
|
|
}
|
|
}
|
|
arguments.push_back(std::move(result));
|
|
}
|
|
void parseArgument(std::vector<Argument>& arguments) {
|
|
// varargs
|
|
if(L.nextIf('*')) {
|
|
kwarg_only = true;
|
|
return;
|
|
}
|
|
std::vector<Argument> args;
|
|
parseArgumentType(args);
|
|
auto arg = std::move(args.back());
|
|
|
|
// nullability is ignored for now, since the JIT never cares about it
|
|
L.nextIf('?');
|
|
arg.name = L.expect(TK_IDENT).text();
|
|
if(L.nextIf('=')) {
|
|
parseDefaultValue(arg);
|
|
}
|
|
arg.kwarg_only = kwarg_only;
|
|
arguments.push_back(std::move(arg));
|
|
}
|
|
IValue parseSingleConstant(TypeKind kind) {
|
|
switch(L.cur().kind) {
|
|
case TK_TRUE:
|
|
L.next();
|
|
return true;
|
|
case TK_FALSE:
|
|
L.next();
|
|
return false;
|
|
case TK_NONE:
|
|
L.next();
|
|
return IValue();
|
|
case TK_IDENT: {
|
|
auto tok = L.next();
|
|
auto text = tok.text();
|
|
if("float" == text) {
|
|
return static_cast<int64_t>(at::kFloat);
|
|
} else if("cpu" == text) {
|
|
return static_cast<int64_t>(at::Device::Type::CPU);
|
|
} else if("strided" == text) {
|
|
return static_cast<int64_t>(at::kStrided);
|
|
} else if("ElementwiseMean" == text) {
|
|
return static_cast<int64_t>(Reduction::ElementwiseMean);
|
|
} else {
|
|
throw ErrorReport(L.cur().range) << "invalid numeric default value";
|
|
}
|
|
}
|
|
default:
|
|
std::string n;
|
|
if(L.nextIf('-'))
|
|
n = "-" + L.expect(TK_NUMBER).text();
|
|
else
|
|
n = L.expect(TK_NUMBER).text();
|
|
if(kind == TypeKind::FloatType || n.find(".") != std::string::npos || n.find("e") != std::string::npos) {
|
|
return std::stod(n);
|
|
} else {
|
|
int64_t v = std::stoll(n);
|
|
return v;
|
|
}
|
|
}
|
|
}
|
|
IValue convertToList(TypeKind kind, const SourceRange& range, std::vector<IValue> vs) {
|
|
switch(kind) {
|
|
case TypeKind::FloatType:
|
|
return fmap(vs, [](IValue v) {
|
|
return v.toDouble();
|
|
});
|
|
case TypeKind::IntType:
|
|
return fmap(vs, [](IValue v) {
|
|
return v.toInt();
|
|
});
|
|
default:
|
|
throw ErrorReport(range) << "lists are only supported for float or int types.";
|
|
}
|
|
}
|
|
IValue parseConstantList(TypeKind kind) {
|
|
auto tok = L.expect('[');
|
|
std::vector<IValue> vs;
|
|
if(L.cur().kind != ']') {
|
|
do {
|
|
vs.push_back(parseSingleConstant(kind));
|
|
} while(L.nextIf(','));
|
|
}
|
|
L.expect(']');
|
|
return convertToList(kind, tok.range, std::move(vs));
|
|
}
|
|
|
|
IValue parseTensorDefault(const SourceRange& range) {
|
|
L.expect(TK_NONE);
|
|
return IValue();
|
|
}
|
|
void parseDefaultValue(Argument& arg) {
|
|
auto range = L.cur().range;
|
|
switch(arg.type->kind()) {
|
|
case TypeKind::DynamicType:
|
|
case TypeKind::GeneratorType: {
|
|
arg.default_value = parseTensorDefault(range);
|
|
} break;
|
|
case TypeKind::NumberType:
|
|
case TypeKind::IntType:
|
|
case TypeKind::FloatType:
|
|
arg.default_value = parseSingleConstant(arg.type->kind());
|
|
break;
|
|
case TypeKind::ListType: {
|
|
auto elem_kind = arg.type->cast<ListType>()->getElementType();
|
|
if(L.cur().kind == TK_IDENT) {
|
|
arg.default_value = parseTensorDefault(range);
|
|
} else if(arg.N && L.cur().kind != '[') {
|
|
IValue v = parseSingleConstant(elem_kind->kind());
|
|
std::vector<IValue> repeated(*arg.N, v);
|
|
arg.default_value = convertToList(elem_kind->kind(), range, repeated);
|
|
} else {
|
|
arg.default_value = parseConstantList(elem_kind->kind());
|
|
}
|
|
} break;
|
|
default:
|
|
throw ErrorReport(range) << "unexpected type, file a bug report";
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
void parseList(int begin, int sep, int end, std::vector<T>& result, void (SchemaParser::*parse)(std::vector<T>&)) {
|
|
auto r = L.cur().range;
|
|
if (begin != TK_NOTHING)
|
|
L.expect(begin);
|
|
if (L.cur().kind != end) {
|
|
do {
|
|
(this->*parse)(result);
|
|
} while (L.nextIf(sep));
|
|
}
|
|
if (end != TK_NOTHING)
|
|
L.expect(end);
|
|
}
|
|
Lexer L;
|
|
bool kwarg_only;
|
|
};
|
|
|
|
} // namespace script
|
|
|
|
namespace {
|
|
|
|
std::string canonicalSchemaString(const FunctionSchema& schema) {
|
|
std::ostringstream out;
|
|
|
|
out << schema.name;
|
|
out << "(";
|
|
|
|
bool seen_kwarg_only = false;
|
|
for(size_t i = 0; i < schema.arguments.size(); ++i) {
|
|
if (i > 0) out << ", ";
|
|
if (schema.arguments[i].kwarg_only && !seen_kwarg_only) {
|
|
out << "*, ";
|
|
seen_kwarg_only = true;
|
|
}
|
|
const auto & arg = schema.arguments[i];
|
|
out << arg.type->str() << " " << arg.name;
|
|
}
|
|
|
|
out << ") -> ";
|
|
if (schema.returns.size() == 1) {
|
|
out << schema.returns.at(0).type->str();
|
|
} else if (schema.returns.size() > 1) {
|
|
out << "(";
|
|
for (size_t i = 0; i < schema.returns.size(); ++i) {
|
|
if (i > 0) out << ", ";
|
|
out << schema.returns[i].type->str();
|
|
}
|
|
out << ")";
|
|
}
|
|
return out.str();
|
|
}
|
|
|
|
using OperatorMap = std::unordered_map<Symbol, std::vector<std::shared_ptr<Operator>>>;
|
|
struct OperatorRegistry {
|
|
private:
|
|
std::mutex lock;
|
|
OperatorMap operators;
|
|
// list of operators whose schema have not yet been parsed, and must
|
|
// be registered before any call to lookup an opeator
|
|
std::vector<std::shared_ptr<Operator>> to_register;
|
|
// Those two maps are used to implement lookupByLiteral, which is needed for the n->match(...) calls.
|
|
// Basically, every function schema is assigned a unique string you can use to match it. However,
|
|
// parsing those strings or comparing and hashing them character by character would be very slow, so
|
|
// we use a trick here! Every string literal in your program is guaranteed to have static storage
|
|
// duration and so its address won't change at runtime. This allows us to memoize answerts for every
|
|
// pointer, which is done by the operators_by_sig_literal map. Still, this map is initially
|
|
// empty, and so we still need to do the complete string matching at the first time, which is implemented
|
|
// by performing a lookup in the operators_by_sig map.
|
|
std::unordered_map<std::string, std::shared_ptr<Operator>> operators_by_sig;
|
|
std::unordered_map<const char *, std::shared_ptr<Operator>> operators_by_sig_literal;
|
|
|
|
// XXX - caller must be holding lock
|
|
void registerPendingOperators() {
|
|
for(auto op : to_register) {
|
|
Symbol sym = Symbol::fromQualString(op->schema().name);
|
|
operators[sym].push_back(op);
|
|
operators_by_sig[canonicalSchemaString(op->schema())] = op;
|
|
}
|
|
to_register.clear();
|
|
}
|
|
|
|
public:
|
|
void registerOperator(Operator&& op) {
|
|
std::lock_guard<std::mutex> guard(lock);
|
|
to_register.push_back(std::make_shared<Operator>(std::move(op)));
|
|
}
|
|
|
|
const std::shared_ptr<Operator>& lookupByLiteral(const char * name) {
|
|
std::lock_guard<std::mutex> guard(lock);
|
|
registerPendingOperators();
|
|
auto it = operators_by_sig_literal.find(name);
|
|
if (it == operators_by_sig_literal.end()) {
|
|
auto op_ptr_it = operators_by_sig.find(name);
|
|
// Handy debugging code that dumps all operators we know about on mismatch
|
|
#if 0
|
|
if (op_ptr_it == operators_by_sig.end()) {
|
|
for (auto & entry : operators_by_sig) {
|
|
std::cout << entry.first << std::endl;
|
|
}
|
|
}
|
|
#endif
|
|
JIT_ASSERTM(op_ptr_it != operators_by_sig.end(), "Couldn't find an operator for ", name);
|
|
it = operators_by_sig_literal.emplace_hint(it, name, op_ptr_it->second);
|
|
}
|
|
return it->second;
|
|
}
|
|
|
|
|
|
const std::vector<std::shared_ptr<Operator>>& getOperators(Symbol name) {
|
|
std::lock_guard<std::mutex> guard(lock);
|
|
registerPendingOperators();
|
|
static std::vector<std::shared_ptr<Operator>> empty;
|
|
auto it = operators.find(name);
|
|
if(it != operators.end())
|
|
return it->second;
|
|
return empty;
|
|
}
|
|
};
|
|
|
|
OperatorRegistry& getRegistry() {
|
|
static OperatorRegistry r;
|
|
return r;
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
void registerOperator(Operator&& op) {
|
|
getRegistry().registerOperator(std::move(op));
|
|
}
|
|
|
|
const std::vector<std::shared_ptr<Operator>>& getAllOperatorsFor(Symbol name) {
|
|
return getRegistry().getOperators(name);
|
|
}
|
|
|
|
Operator& sig(const char *signature) {
|
|
return *getRegistry().lookupByLiteral(signature);
|
|
}
|
|
|
|
FunctionSchema parseSchema(const std::string& schema) {
|
|
return script::SchemaParser(schema).parseDeclarations().at(0);
|
|
}
|
|
|
|
bool Operator::matches(const Node* node) const {
|
|
// wrong name
|
|
if (node->kind().toQualString() != schema().name) {
|
|
return false;
|
|
}
|
|
at::ArrayRef<const Value*> actuals = node->inputs();
|
|
const auto& formals = schema().arguments;
|
|
|
|
// not enough inputs
|
|
if(actuals.size() < formals.size())
|
|
return false;
|
|
|
|
|
|
TypeEnv type_env;
|
|
for(size_t i = 0; i < formals.size(); ++i) {
|
|
try {
|
|
TypePtr formal = matchTypeVariables(formals[i].type, actuals[i]->type(), type_env);
|
|
// mismatched input type
|
|
if (!actuals[i]->type()->isSubtypeOf(formal)) {
|
|
return false;
|
|
}
|
|
} catch(TypeMatchError& err) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// too many inputs
|
|
if(!schema().is_vararg && actuals.size() != formals.size()) {
|
|
// std::cout << "not all inputs used\n" << input_i << " " << inputs_size << "\n";
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
std::shared_ptr<Operator> findOperatorFor(const Node* node) {
|
|
const auto& candidates = getAllOperatorsFor(node->kind());
|
|
for(const auto& candidate : candidates) {
|
|
if(candidate->matches(node)) {
|
|
return candidate;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
const Operator& getOperatorFor(const Node* node) {
|
|
auto op = findOperatorFor(node);
|
|
if(op)
|
|
return *op;
|
|
|
|
auto er = script::ErrorReport(node->getSourceLocation());
|
|
er << "Schema not found for node. File a bug report.\n";
|
|
er << "Node: " << *node << "\n";
|
|
er << "Input types:";
|
|
for(size_t i = 0; i < node->inputs().size(); ++i) {
|
|
if(i > 0)
|
|
er << ", ";
|
|
er << *node->inputs()[i]->type();
|
|
}
|
|
er << "\ncandidates were:\n";
|
|
const auto& candidates = getAllOperatorsFor(node->kind());
|
|
for(auto & candidate : candidates) {
|
|
er << " " << candidate->schema() << "\n";
|
|
}
|
|
throw er;
|
|
}
|
|
|
|
|
|
OperatorSet::OperatorSet(std::initializer_list<const char *> sig_literals) {
|
|
auto & registry = getRegistry();
|
|
for (const char * sig : sig_literals) {
|
|
auto op = registry.lookupByLiteral(sig);
|
|
ops[Symbol::fromQualString(op->schema().name)].push_back(op);
|
|
}
|
|
}
|
|
|
|
Operator* OperatorSet::find(const Node *n) const {
|
|
auto it = ops.find(n->kind());
|
|
if (it == ops.end()) {
|
|
return nullptr;
|
|
}
|
|
for (auto & op : it->second) {
|
|
if (op->matches(n)) {
|
|
return op.get();
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
}}
|